

Lecture Notes in Computer Science 4373
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Koen Langendoen Thiemo Voigt (Eds.)

Wireless
Sensor Networks

4th European Conference, EWSN 2007
Delft, The Netherlands, January 29-31, 2007
Proceedings

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Koen Langendoen
Delft University of Technology
2628 CD Delft, The Netherlands
E-mail: K.G.Langendoen@tudelft.nl

Thiemo Voigt
Swedish Institute of Computer Science
Box 1263, SE-164 29 Kista, Sweden
E-mail: thiemo@sics.se

Library of Congress Control Number: 2006939921

CR Subject Classification (1998): C.2.4, C.2, F.2, D.1.3, D.2, E.1, H.4, C.3

LNCS Sublibrary: SL 5 – Computer Communication Networks and
Telecommunications

ISSN 0302-9743
ISBN-10 3-540-69829-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69829-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11976370 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

This volume contains the proceedings of EWSN 2007, the fourth European con-
ference on Wireless Sensor Networks. The conference took place at TU Delft,
January 29–31, 2007. Its objective was to provide a forum where researchers
with different experience and background, from hardware to applications, would
present and discuss the latest developments in the exciting field of wireless sensor
networks.

Since the interest in sensor networks has been rapidly expanding, it was
no surprise that EWSN received a record number of 164 submissions, of which
22 papers were selected for the final conference. It was a pleasure to observe that,
although based in Europe, the conference serves as a truly international forum
with submissions originating from all five continents: 35% from Europe, 35%
from Asia, 26% from America, 3% from Australia, and 1% from Africa. The se-
lection process involved more than 500 reviews with most papers being evaluated
by at least three reviewers. The final program covered a wide range of topics,
grouped into seven sessions: networking, tracking, algorithms, applications and
support, medium access control, OS and tools, and localization.

In addition to the papers published in these proceedings, the conference also
included a poster and demonstration session, of which separate proceedings are
available. Tutorials and keynotes complemented the program, together making
for a truly interesting conference.

In closing, we would like to express our sincere gratitude to everyone who
contributed to EWSN 2007. In particular, the members of the Program Com-
mittee and external reviewers responsible for the strong technical program, the
local TU Delft people for streamlining the conference logistics, and Springer for
their excellent cooperation in putting these proceedings together.

January 2007 Koen Langendoen and Thiemo Voigt
Program Chairs

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

EWSN 2007, the fourth European conference on Wireless Sensor Networks, took
place in Delft, The Netherlands, January 29–31, 2007. It was organized by the
department of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, The Netherlands.

Executive Committee

General Chair: Koen Langendoen (TU Delft, The Netherlands)
Program Co-chairs: Koen Langendoen (TU Delft, The Netherlands) and

Thiemo Voigt (SICS, Sweden)
Publicity Co-chairs: Pedro Marrón (University of Stuttgart, Germany) and

Andreas Savvides (Yale, USA)

Local Arrangements

Muneeb Ali (Delft University of Technology, The Netherlands)
Laura Zondervan (Delft University of Technology, The Netherlands)

Program Committee

Tarek Abdelzaher (University of Illinois at Urbana Champaign)
Michael Beigl (TU Braunschweig)
Jan Beutel (ETH Zurich)
Athanassios Boulis (National ICT Australia)
Torsten Braun (University of Bern)
Rebecca Braynard (Duke University)
Nirupama Bulusu (Portland State University)
Srdjan Capkun (ETH Zurich)
Mun Choon Chan (National University of Singapore)
Maarten Ditzel (TNO)
Jean-Pierre Ebert (IHP microelectronics)
Carlo Fischione (KTH Stockholm)
Vipin Gopal (United Technologies Research Center)
Takahiro Hara (Osaka University)
Paul Havinga (University of Twente)
Mike Hazas (Lancaster University)
Wendi Heinzelman (University of Rochester)
Holger Karl (University of Paderborn)
Bhaskar Krishnamachari (University of Southern California)
Koen Langendoen (Delft University of Technology)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

Chenyang Lu (Washington University in St. Louis)
Pedro J. Marrón (University of Stuttgart)
Amy L. Murphy (University of Lugano)
Chiara Petrioli (University “La Sapienza” Rome)
Marcelo Pias (University of Cambridge)
Hartmut Ritter (FU Berlin)
Utz Roedig (University College Cork)
Christian Rohner (Uppsala University)
Kay Römer (ETH Zurich)
Andreas Savvides (Yale)
Thiemo Voigt (SICS)
Klaus Wehrle (RWTH Aachen)
Dirk Westhoff (NEC)
Andreas Willig (TU Berlin)
Adam Wolisz (TU Berlin)
Wei Ye (USC/ISI)

Additional Reviewers

Henoc Agbota Chien-Liang Fok
Roberto Alesii Matthias Gauger
Muneeb Ali Amitabha Ghosh
Markus Anwander Joao Girao
Frederik Armknecht Stefan Goetz
Aline Baggio Ben Green
Zinaida Benenson Yong Guan
Jonathan Benson Yukang Guo
Thomas Bernoulli Gertjan Halkes
Sangeeta Bhattacharya Ahmed Helmy
Urs Bischoff Alban Hessler
Eric-Oliver Blass Hans-Joachim Hof
Alvise Bonivento Pai-Han Huang
Marcin Brzozowski Er Inn Inn
Ricardo Chaves Johan Janssen
Yu Chen Sverker Janson
Octav Chipara Akimitsu Kanzaki
Karthik Dantu Shyam Kapadia
Roberto Di Pietro Kevin Klues
Daniel Dietterle Albert Krohn
Fred Dijkstra Andreas Lachenmann
Cormac Duffy Caspar Lageweg
Stefan Dulman Olaf Landsiedel
Anna Egorova-Förster Lars-Åke Larzon
Leon Evers Yee Wei Law
Laura Feeney Jae-Joon Lee

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization IX

Maria Lijding Robert Sauter
Hua Liu Zach Shelby
Dimitrios Lymberopoulos Adam Silberstein
Sanjay Madria Alberto Speranzon
Mihai Marin-Perianu Cormac Sreenan
Raluca Marin-Perianu Avinash Sridharan
Marinus Maris Thomas Staub
Gaia Maselli Affan Syed
Rene Mayrhofer Hwee-Xian Tan
Alessandro Mei Shao Tao
Andreas Meier Thiago Teixeira
Dragan Milic Stefano Tennina
Daniel Minder Daniela Tulone
Sridhar NagarajaRao Markus Waelchli
Tony O’Donovan Gerald Wagenknecht
Tom Parker Zhiguo Wan
Sundeep Pattem Xiuchao Wu
Kaustubh Phanse Guoliang Xing
Krzysztof Piotrowski Kiran Yedavalli
Maxim Piz SunHee Yoon
Axel Poschmann Mingze Zhang
Olga Saukh Benigno Zurita Ares

Supporting Institutions

Delft University of Technology, The Netherlands

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Networking

Versatile Support for Efficient Neighborhood Data Sharing 1
Andreas Lachenmann, Pedro José Marrón, Daniel Minder,
Olga Saukh, Matthias Gauger, and Kurt Rothermel

An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor
Networks . 17

Quanbin Chen, Jian Ma, Yanmin Zhu, Dian Zhang, and
Lionel M. Ni

Efficient Routing from Multiple Sources to Multiple Sinks in Wireless
Sensor Networks . 34

Pietro Ciciriello, Luca Mottola, and Gian Pietro Picco

Tracking

inTrack: High Precision Tracking of Mobile Sensor Nodes 51
Branislav Kusý, György Balogh, János Sallai, Ákos Lédeczi, and
Miklós Maróti

Approximate Initialization of Camera Sensor Networks 67
Purushottam Kulkarni, Prashant Shenoy, and Deepak Ganesan

Trail: A Distance Sensitive WSN Service for Distributed Object
Tracking . 83

Vinodkrishnan Kulathumani, Anish Arora, Murat Demirbas, and
Mukundan Sridharan

Algorithms

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor
Networks . 101

Hekang Chen, Shuigeng Zhou, and Jihong Guan

Secure Data Aggregation with Multiple Encryption 117
Melek Önen and Refik Molva

RIDA: A Robust Information-Driven Data Compression Architecture
for Irregular Wireless Sensor Networks . 133

Thanh Dang, Nirupama Bulusu, and Wu-chi Feng

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling . . . 150
Yongjun Li, Wandong Cai, Guangli Tian, and Wei Wang

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XII Table of Contents

Applications and Support

Fence Monitoring – Experimental Evaluation of a Use Case for Wireless
Sensor Networks . 163

Georg Wittenburg, Kirsten Terfloth, Freddy López Villafuerte,
Tomasz Naumowicz, Hartmut Ritter, and Jochen Schiller

Development of a Wireless Sensor Network for Collaborative Agents
to Treat Scale Formation in Oil Pipes . 179

Frank Murphy, Dennis Laffey, Brendan O’Flynn,
John Buckley, and John Barton

Deployment Support Network – A Toolkit for the Development
of WSNs . 195

Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen,
Lothar Thiele, Kevin Martin, and Philipp Blum

Medium Access Control

Energy Consumption of Minimum Energy Coding in CDMA Wireless
Sensor Networks . 212

Benigno Zurita Ares, Carlo Fischione, and Karl Henrik Johansson

Crankshaft: An Energy-Efficient MAC-Protocol for Dense Wireless
Sensor Networks . 228

G.P. Halkes and K.G. Langendoen

Decentralized Scattering of Wake-Up Times in Wireless Sensor
Networks . 245

Alessandro Giusti, Amy L. Murphy, and Gian Pietro Picco

OS and Tools

Improving the Energy Efficiency of the MANTIS Kernel 261
Cormac Duffy, Utz Roedig, John Herbert, and Cormac J. Sreenan

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 277
Deokwoo Jung, Thiago Teixeira, Andrew Barton-Sweeney, and
Andreas Savvides

Multithreading Optimization Techniques for Sensor Network Operating
Systems . 293

Hyoseung Kim and Hojung Cha

Localization

An Empirical Study of Antenna Characteristics Toward RF-Based
Localization for IEEE 802.15.4 Sensor Nodes . 309

Sungwon Yang and Hojung Cha

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XIII

Radio Propagation-Aware Distance Estimation Based on Neighborhood
Comparison . 325

Carsten Buschmann, Horst Hellbrück, Stefan Fischer,
Alexander Kröller, and Sàndor Fekete

Removing Systematic Error in Node Localisation Using Scalable Data
Fusion . 341

Albert Krohn, Mike Hazas, and Michael Beigl

Author Index . 357

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient
Neighborhood Data Sharing

Andreas Lachenmann, Pedro José Marrón, Daniel Minder, Olga Saukh,
Matthias Gauger, and Kurt Rothermel

Universität Stuttgart, IPVS, Universitätsstr. 38, 70569 Stuttgart, Germany
{lachenmann, marron, minder, saukh, gauger,

rothermel}@ipvs.uni-stuttgart.de

Abstract. Many applications in wireless sensor networks rely on data
from neighboring nodes. However, the effort for developing efficient solu-
tions for sharing data in the neighborhood is often substantial. Therefore,
we present a general-purpose algorithm for this task that makes use of the
broadcast nature of radio transmission to reduce the number of packets.
We have integrated this algorithm into TinyXXL, a programming lan-
guage extension for data exchange. This combined system offers seamless
support both for data exchange among the components of a single node
and for efficient neighborhood data sharing. We show that compared to
existing solutions, such as Hood, our approach further reduces the work
of the application developer and provides greater efficiency.

1 Introduction

As sensor networks gain momentum and applications are increasingly developed
by experts in the application domain rather than experts in sensor networks,
there is a growing need to simplify standard tasks while achieving the efficiency
of optimized applications. To address this issue both programming abstractions
and efficient general-purpose algorithms have to be considered.

In sensor network applications one such standard task is data sharing among
neighboring nodes. For example, the location of neighboring nodes [1,2] or in-
formation about their current role [3] are used by several algorithms and appli-
cations. Typically, developers create application-specific protocols for this task.
This approach tends to incur significant development overhead and, for exam-
ple, with a tight development budget, might often lead to inefficient solutions.
Therefore, a general-purpose algorithm would not only reduce the development
effort but also make neighborhood data sharing more efficient. In this paper we
describe such an algorithm for neighborhood data sharing that strives to min-
imize the number of bytes transmitted. In addition, we use this algorithm as
the basis of programming abstractions to facilitate the development of efficient
applications that use data from neighboring nodes.

Although neighborhood data sharing only involves communication in a lim-
ited part of the sensor network and the size of such data is often small, the
data of all nodes throughout the network adds up to considerable amounts.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 A. Lachenmann et al.

Therefore, optimizing such transmissions locally on each node can result in sig-
nificant improvements regarding the number of messages sent and enhance the
energy efficiency of the whole network. So far, however, most work has focused
on disseminating data to all nodes in the network (e.g., [4,5,6]) or on data-centric
algorithms that transmit data to a sink node (e.g., [7]). In contrast, sharing data
efficiently within the neighborhood has not been studied in sufficient detail yet.
Even work dealing with programming abstractions for data sharing left the ac-
tual data transmission algorithm to be created by the application developer [8],
or only provided simple ones [9].

There are two classes of data sharing algorithms: push-based and pull-based
approaches [10]. With push-based approaches a node providing data sends it
without having received an explicit request for it. Obviously, such approaches
can lead to inefficiencies when the node’s neighbors do not need this data. Es-
pecially in heterogeneous networks a node cannot necessarily infer what data
its neighbors need because they may execute different code. Thus nodes might
transmit unnecessary data or omit data that is actually required.

The second class of data sharing algorithms is composed of pull-based ap-
proaches. Here nodes only send data when they have received a request for it.
This approach is better suited for heterogeneous networks, since each node may
request the data it actually needs. The only shared assumptions are that neigh-
bors can provide the requested data and use the same naming scheme. However,
a pull-based approach can incur significant overhead for sending requests.

Therefore, we have developed Neidas (“NEIghborhood DAta Sharing algo-
rithm”), an efficient pull-based algorithm for neighborhood data sharing. Similar
to network-wide dissemination approaches, our algorithm makes use of over-
hearing requests and data from neighboring nodes. It leverages the advantages
of both pull-based and push-based strategies: The algorithm works well with
heterogeneous networks and reduces the overhead for requests.

Typically, data is not just shared among neighboring nodes but also be-
tween the software components of a single node. We address this problem with
TinyXXL [11], an extension to the nesC programming language [12]. TinyXXL
simplifies cross-layer data sharing and decouples the components accessing data.
Its runtime component, the TinyStateRepository, provides efficient access to such
data. We have integrated Neidas into TinyXXL to create a comprehensive ap-
proach for data sharing among components on a single node and on neighboring
nodes, which reduces the effort for the developer.

The rest of this paper is organized as follows. Section 2 describes related
work. In Section 3 we present our data sharing algorithm and in Section 4 its
integration into TinyXXL. Section 5 evaluates our approach. Finally, Section 6
gives an outlook on future work and concludes this paper.

2 Related Work

Publish/subscribe systems have been used in different domains to make data
available. In sensor networks several algorithms following a publish/subscribe-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 3

like paradigm have already been proposed. Perhaps the best-known example is
SPIN [4], which uses such an approach to disseminate data in the network. How-
ever, these approaches typically require explicit interaction between every two
nodes publishing and subscribing to data, which is not needed by our algorithm.

Gossiping algorithms are flooding-like approaches where nodes randomly for-
ward data packets that they have received. Trickle [5] uses a gossiping variant
to efficiently distribute information about code images in the whole network. It
has been integrated into Deluge [6], a code distribution algorithm, and adapted
for the Drip protocol [13] to transmit queries to all nodes in the network. Neidas
is inspired by the concepts of Trickle but deals with multiple nodes requesting
potentially different data. Trickle, in contrast, can assume a single or few data
sources and just one kind of data. In addition, with Neidas changes of data are
kept local whereas Trickle disseminates them through the network.

Hood [8] is a programming abstraction that tries to ease neighborhood data
exchange in sensor networks. However, it leaves important parts to be added by
the application developer, e.g., data transmission policies that are responsible for
sending data and requests. This allows for more flexibility than our system but
increases the development effort. In addition, Hood does not strive to provide a
comprehensive system for both intra-node and neighborhood data exchange.

Likewise, abstract regions [9] provide programming primitives for local com-
munication. An abstract region is defined using radio connectivity or the location
of nodes, for example. Extending the neighborhood beyond immediate neighbors
within radio range is something not considered by our approach yet. Like Hood,
abstract regions only include a very basic data transmission algorithm. Similarly,
logical neighborhoods [14] can be used for communication within a set of nodes
that are not necessarily just the nodes in radio range. However, with this system
a data sharing mechanism would still have to be implemented by the application
developer based on other primitives.

There are numerous algorithms and applications that make use of data ob-
tained from their neighbors. Most of them include custom solutions for neighbor-
hood data sharing. Prominent examples are algorithms for self-organization [3],
routing [1], and medium access control [15]. By factoring out the transmission of
data using TinyXXL, developers could focus more closely on the actual purposes
of their algorithms and applications.

3 Neighborhood Data Sharing Algorithm

Neidas is a data sharing algorithm that retrieves data from all neighboring nodes
in radio range and continuously transmits updates when this data changes. It
is based on the observation that – even in heterogeneous networks – there are
typically several nodes within radio range that are interested in the same data.
Therefore, our algorithm can take advantage of polite gossiping, which was first
introduced in the Trickle algorithm [5]. With this approach nodes wait a ran-
dom time before sending data or a request for data from neighboring nodes. If
during this time kr neighbors send the same request, polite gossiping suppresses

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 A. Lachenmann et al.

(1) In each request round:
Wait for the listen-only period and random interval
For each data item needed from neighbors:

If less than kr identical requests have been received:
Send request

(2) In each data send round:
For each data item requested by other nodes:

If data item not requested in last data send rounds:
Remove request

Wait for listen-only period and random interval
For each data item requested by other nodes:

For local data and data received from neighbors:
If less than kd copies of data with same version
number have been received from this node:

Send data including version number
Double duration of data send round

(3) If new neighbors arrive:
Reset duration of data send round to one request round

(4) Request received:
Mark data as requested
Increment counter for request

(5) Data received:
If data requested and data is from node in neighborhood:

If version number > stored version number
Store data, source node, and version number

Else if version number == stored version number
Increment counter for this data

Fig. 1. Overview of the Neidas algorithm

the transmission of redundant messages. Therefore, this algorithm leverages the
broadcast nature of radio transmission: If several nodes have the same request,
making each node send it would be unnecessary. Similarly, Neidas uses the same
mechanism to locally forward the data provided by neighbors.

To deal with transmission failures and dynamic topologies Neidas periodi-
cally resends requests and data in so-called request and data send rounds. Fig. 1
gives an overview of the basic operation of the algorithm. Our algorithm is exe-
cuted: periodically in each request round (1) and data send round (2), when new
nodes arrive in the neighborhood (3), and when requests (4) or data packets (5)
are received. The following subsections describe the Neidas algorithm in more
detail.

3.1 Neighborhood Management

Since Neidas retrieves and stores data from neighboring nodes, it needs to know
which nodes are in the neighborhood. Our current implementation includes an
algorithm that intercepts all Neidas packets to build this neighborhood table.
This algorithm does not incur any message overhead because it does not send

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 5

t

Listen-onlyListen-only

Request round Request round

Send requestSend request
if necessaryif necessary

Fig. 2. Actions within request rounds

any packets itself. If it has not received any packets within a predefined interval,
it removes this particular node from the table.

If there is already an algorithm available that provides the required interfaces,
it can be used instead to avoid duplicate data in memory. For instance, neighbor-
hood information can be retrieved from the TinyStateRepository (our cross-layer
data repository [11]), SP’s neighbor table [16], or accessed directly from the algo-
rithm providing the data. To demonstrate this flexibility we implemented several
such algorithms.

3.2 Sending Requests

Neidas is a pull-based algorithm, i.e., nodes send requests for data that they
need. It takes advantage of overhearing messages by suppressing requests if
other nodes have already sent the same one. The algorithm periodically re-
sends requests to deal with dynamic neighborhoods and transmission failures.
Therefore, it divides time into fixed-length request rounds, which are shown in
Fig. 2.

Starts of rounds do not have to be synchronized on neighboring nodes. This
can lead to an increased number of messages if nodes send their requests early at
the beginning of a round. To avoid this problem, each round starts with a listen-
only period [5] in which a node just listens for messages from its neighbors (see
Fig. 2). In the rest of the round each node randomly selects a point of time at
which it will send its request if by then it has not overheard at least kr identical
ones. Otherwise, it suppresses its own request in the current round.

Since neighborhoods may overlap, not necessarily all the neighbors of a node
receive a request when the node overhears one. Therefore, a node might sup-
press its own transmission although not all of its neighbors have received the
same request. This is especially a problem because there might be no other node
in the neighborhood requesting that data item. Trickle can easily deal with this
issue since all nodes transmit the same kind of information and because ver-
sion numbers ensure that the most recent information is always sent. Neidas , in
contrast, addresses this problem in the following way. First, the threshold kr is
set to a slightly greater value. We obtained good results with kr = 3. Secondly,
the random delay before sending a request ensures that not always the same

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 A. Lachenmann et al.

nodes with the same set of neighbors send a request. Finally, following a soft-
state approach with timeouts longer than a single round, nodes do not have to
receive a request in every round. As shown in our simulations, in static topologies
all nodes within radio range receive a request after some rounds.

If communication links are asymmetrical, i.e., node A hears node B, but B
cannot receive messages from A, Neidas remains functional, since it does not
necessarily require direct interaction between nodes to request and transmit
data – given that there are other nodes with the same request. Thus Neidas
fully makes use of the broadcast nature of radio transmission with its polite
gossiping scheme.

3.3 Sending Data

Besides sending requests, Neidas takes care of sending the requested data itself.
Nodes transmit this data in two cases. First, they send all their matching data
periodically – including data received from neighboring nodes. This helps to
make sure that after some retransmissions all neighbors have received it. Second,
when the local data is modified, nodes send additional updates to their neighbors.
This way the neighbors receive the most current data even before the next regular
retransmission.

For sending data Neidas also takes advantage of polite gossiping: Nodes that
have received data from one of their neighbors transmit it in addition to their
local values. Since data is associated with a single node, only exactly the same
data from the same node can suppress a transmission. In order to ensure that
just the most current data is resent, the data includes a version number which is
incremented whenever the data changes. To deal with version number overflows,
receivers only accept data if this number is within a given range.

Since data is only relevant for the immediate neighbors and since only data
originating from the same node can suppress its transmission, the polite gossiping
threshold kd for data can be smaller than kr for requests. In addition, the version
numbers define a prioritization where more recent data will not be silenced by
older versions.

Nodes only accept data originating from one of the neighbors in radio range.
This makes sure that data received via a third node is not disseminated through-
out the network but kept within the neighborhood. Although Neidas currently
only uses the radio range to define the neighborhood, with polite gossiping it
would be easy to transmit data to differently defined groups of neighbors such
as those proposed by abstract regions [9].

Data is not sent in every round in which it has been requested. The reason for
this is that Neidas tries to reduce the number of packets. Since the data itself
is often somewhat larger than a request message, it is important to minimize
the number of data transmissions. Therefore, we have introduced data send
rounds. All data requested in the last and current data send round is sent if kd

neighboring nodes have not already transmitted the same data. As Fig. 3 shows,
a data send round is composed of one or more request rounds. The length of
the data send round is doubled after each round (up to a predefined maximum

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 7

t

Data send round

Request rounds

Fig. 3. Relation between request rounds and data send rounds

duration), in the figure from the length of one request round to four of them.
It is reset to the length of a single request round when new nodes arrive in
the neighborhood. This way these nodes receive prompt replies to their requests
while greatly reducing the number of messages in static topologies. Note that
changes to the length of the data send round are local to each node; they do
not require any coordination among nodes. The length value reflects each node’s
estimate how often resends are necessary to make sure that all neighboring nodes
receive a data item while keeping the rate of messages low.

We use a soft-state approach to remove requests after some time. Requested
data, however, is not removed as long as the node stays within the neighborhood
and there is enough memory available. So even after long data send rounds or
several failed data transmissions, a node using Neidas still can access a previously
received version of its neighbors’ data from the local cache.

3.4 Further Optimizations

It is well known that radio communication consumes large amounts of energy
[17]. In addition, there is also a significant MAC layer overhead associated with
every packet. Therefore, reducing the number of messages is even more important
than simply reducing the amount of data to be transmitted. In TinyOS and its
standard MAC layer protocol [18], for instance, the MAC layer preamble, the
header and the checksum included in all packets add between 17 (full duty cycle
of receivers) and 2,663 bytes (low power listening with 1% duty cycle). Thus
with a default data payload size of 29 bytes the overhead of sending a packet is
between 58% and more than 9,000%.

Requests for neighborhood data and the data itself are expected to be compar-
atively small. Therefore, as an optimization Neidas accumulates several requests
or data transmissions into a single packet. This is easily possible since Neidas
uses small integer IDs instead of long names to identify the data and its type.

Sometimes even further optimizations are possible. Many applications and
algorithms periodically send messages that do not fill the complete payload.
Therefore, Neidas can take advantage of this free space by piggybacking its re-
quests and data onto these messages. If the radio is operated in promiscuous
mode, it does not even matter whether or not the packet is addressed to the
same node as the piggybacked data, which – in our implementation – is always

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 A. Lachenmann et al.

broadcast to all nodes in radio range. However, piggybacking is not feasible in
all cases. For example, it is possible that the application does not send any data
itself or that there are not enough free bytes available in the messages. Therefore,
if after a time interval specified by Neidas the data has not been piggybacked,
the piggybacking component sends a separate packet for this data.

This approach may incur some additional delays. During this time neighboring
nodes might already have transmitted the same request, so that using polite
gossiping it no longer has to be sent. Therefore, Neidas checks before actually
sending the request if it is still necessary; otherwise, it cancels it.

Our implementation works with all packets sent by any TinyOS-based appli-
cations and protocols because it replaces the TinyOS components which provide
the so-called active message interface immediately above the MAC layer. For
both the higher-level and the MAC layer component itself piggybacking is com-
pletely transparent.

4 Programming and Runtime Support

4.1 Cross-Layer Data Exchange with TinyXXL

TinyXXL [11] is an extension of the nesC programming language [12] that decou-
ples software components to ease cross-layer data exchange. With TinyXXL data
shared among components is declared in a similar way to interfaces. Components
using this data then can define dependencies without explicitly specifying the
component providing it.

With automatic optimizations performed by the TinyXXL compiler, it is pos-
sible to develop applications that make use of cross-layer data from reusable
components. For example, the compiler ensures that a single kind of data is
stored only once in limited RAM and that no energy-intensive data gathering
is performed redundantly. In addition, with its “virtual data items” TinyXXL
allows the developer to create conversions and arbitrary database-like operators
such as “count” and “average” to access data. This way not just the raw internal
data of a component can be used by other ones but also derived data.

A pre-compiler translates TinyXXL source code into pure nesC code. It creates
the components of the TinyStateRepository that stores the data at runtime. The
TinyStateRepository offers a publish/subscribe interface with – for efficiency
reasons – static subscriptions at compile-time.

4.2 Integration of Neighborhood Data Sharing

Previous versions of TinyXXL only allowed for data exchange among the com-
ponents of a single node. To create a comprehensive system both for this kind of
intra-node data exchange and for neighborhood data sharing we slightly modi-
fied TinyXXL to support accessing the data of neighbors and use Neidas in the
TinyStateRepository. This combined system is called TinyXXL/N .

If a component wants to access data of its neighbors, it has to declare this
property as a dependency. Then it may use the neighbors’ data similar to an array

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 9

1 module DataAccessM {
2 uses interface Timer ;
3 uses xldata RoleData as RoleDataLocal ;
4 uses xldata RoleData as RoleDataN [] ;
5 . . .
6 event r e s u l t t Timer . f i r e d () {
7 u in t 8 t i ;
8 for (i =0; i<Neighbors . count ; i++) {
9 i f (RoleDataLocal . r o l e

10 == RoleDataN [Neighbors . nodes [i]] . r o l e) {
11 . . .

Fig. 4. Accessing neighborhood data with TinyXXL/N

with the neighbors’ node IDs. For instance, the code snippets in Fig. 4 show in
line 4 how a dependency for role information [3] of neighboring nodes is declared.
The brackets at the end of the line, which are not given for the dependency on the
corresponding local values (line 3), denote that data is requested from neighbors
and then accessed in an array-like fashion. With these declarations both local
role information and that of neighboring nodes can be accessed (see lines 9 and
10 in the figure). If the data of a node is accessed which has not been received
yet, a default value specified with the declaration of the data is returned (e.g.,
a reserved value indicating the absence of data). Since RAM is very limited on
sensor nodes, Neidas does not store separately which nodes have already sent
their data.

If data from neighboring nodes is declared to be accessed by at least one
component, the TinyXXL compiler reserves some memory for caching this data
locally. In addition, it adds calls to the Neidas algorithm to retrieve and con-
tinuously update the data. The compiler ensures that for each data item – even
if it is requested by several components – there is only one such request sent
and that the same data from a single node is stored only once in RAM. This
way applications can benefit from the advantages of Neidas without adding the
burden of implementing data exchange on the application developer. In fact, it
is possible to retrieve some arbitrary data from the TinyStateRepository. The
developer of the code running on the neighboring nodes does not have to be
aware of the fact that an already existing piece of data might be needed by
another node. This is an important advantage of our approach that facilitates
independent development of software in heterogeneous sensor networks as well
as reusability and exchangeability of components, whose data is automatically
shared with neighboring nodes when necessary.

One inherent assumption of this solution is that on neighboring nodes the
data is provided by a component and stored in the TinyStateRepository. Be-
cause of optimizations performed by the TinyXXL compiler, data is only gath-
ered on a node if there is a component that needs to access it locally. Otherwise,
it removes the data gathering code to reduce runtime overhead. In this case

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 A. Lachenmann et al.

these nodes cannot answer requests for such neighborhood data. Therefore, like
with manually implemented data sharing, the developer has to ensure that data
needed from neighboring nodes is available.

If a node just accesses its local values and not those of its neighbors, there is
almost no overhead associated with the integration of Neidas . In this case Neidas
does not transmit any request messages. In addition, its RAM consumption
is almost negligible: There is no need to reserve memory for local copies of
neighborhood data, if the node does not use it. However, Neidas has to reserve
two single bits for each kind of data in order to check if it has been requested
by neighboring nodes within the most recent data send rounds.

Our solution offers the benefits of TinyXXL also for neighborhood data shar-
ing. For example, it decouples components providing and accessing data: The
component providing a piece of data that is needed by another node can be
different from the one requesting data. In fact, in heterogeneous networks the
component providing this data does not have to be part of the application re-
questing it. In addition, just like with local data it is possible to use virtual data
items to transform data or perform some computations on it. Thus a neigh-
boring node does not have to store a piece of data in order to provide it, as
long as it can be converted to the target format. Furthermore, by taking advan-
tage of the TinyStateRepository’s publish/subscribe mechanism the system can
transmit updated data to its neighbors if it has been modified.

5 Evaluation

5.1 Experimental Setup

We have simulated Neidas and TinyXXL/N using Avrora [19], which accurately
emulates the behavior of Mica2 nodes. Unless otherwise noted, each simulation
scenario contains 50 nodes which are randomly placed in a 60 m × 60 m rect-
angular area. Since communication is only local to the neighborhood, we expect
that the results are also valid for larger-size networks.

The nodes’ radio model is set to a lossy model, which is based on empirical
data and has a transmission range of about 15 m. The TinyOS MAC layer takes
care of multiple accesses to the radio channel. The measurements shown are
the average of 10 runs of 600 simulated seconds each. We have set Neidas ’s
polite gossiping thresholds kr to 3 and kd to 1. As described above, experiments
have shown that good results can be obtained with these values. The duration
of a request round has been set to 10 s for all algorithms but in long-running
experiments this value can be neglected – as long as all algorithms use the same
duration. Nodes are turned on randomly in the first 10 s and are not switched
off before the end of the simulation. Unless otherwise noted, we have not made
use of piggybacking optimizations.

5.2 Efficiency of Neidas

We have created straight-forward implementations of standard pull-based and
push-based algorithms, which are likely to be integrated in similar form in real

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 11

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

A
vg

. n
um

be
r

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Share of nodes needing data

Neidas
Pull

Push

Fig. 5. Bytes transmitted, varying share
of nodes requesting data

 0

 10

 20

 30

 40

 50

 60

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. l
at

en
cy

 [s
]

Share of nodes needing data

Neidas request latency
Pull request latency
Neidas data latency

Pull data latency
Push data latency

Fig. 6. Latency until requests and data
have been received

applications. For a meaningful comparison, all of them use the same underlying
data format and marshaling components as Neidas .

The pull-based algorithm periodically requests the data of neighboring nodes
but does not suppress requests already heard. Similar to Neidas it does not
service a request immediately but waits until the next round. However, it does
not distinguish between request and data send rounds. The push-based algorithm
periodically broadcasts its data without the need for requests. Neither of these
algorithms resends data from neighboring nodes.

In our simulations all nodes provide a single data item of 10 bytes. We have
varied the ratio of (randomly selected) nodes that needed this data. The only
messages sent are those to request and transmit data.

Fig. 5 shows the total number of bytes transmitted by each node on average –
including the packet header, preamble, etc. Since there are no big differences in
the processing overhead of the three algorithms, overall energy consumption is
dominated by the radio. Therefore, the energy consumed by the algorithms can
be inferred from the number of bytes transmitted.

The push-based algorithm always transmits the same number of bytes because
it does not distinguish between nodes that need data and those that do not. In
contrast, for the pull-based algorithm the number of bytes transmitted grows
with the percentage of nodes requesting data. If this percentage is greater than
about 70%, the pull-based algorithm is less efficient than the push-based one
because of the additional overhead for request messages. Even when all nodes
request data, the overhead for these requests is relatively small. The reason for
this is that the pull-based algorithm uses the efficient underlying techniques
from Neidas to build packets. Therefore, requests are usually sent together with
the data as a single message, and there is no overhead for the packet header,
preamble, etc. Otherwise, the numbers of the pull-based algorithm would be up
to 500% greater (not shown in the figure), because the payload is very small and
thus the overhead of sending extra packets has even greater effects.

Neidas transmits much fewer bytes than these two algorithms. Depending on
the number of nodes requesting data, it only sends between 30% and 62% of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

12 A. Lachenmann et al.

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40

A
vg

. n
um

be
r

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Avg. number of nodes in radio range

Neidas
Pull

Push

Fig. 7. Bytes transmitted varying the node density

number of bytes of the push-based algorithm and between 44% and 58% of the
pull-based algorithm. Up to 20% of the savings compared to the corresponding
pull-based approach are due to polite gossiping of requests. This percentage
increases with higher node densities. Enlarging the length of data send rounds
is responsible for the rest of the savings.

Fig. 6 compares the average latency until a node entering the neighborhood
receives requests and data. The request latency of Neidas is up to 4 s greater
than that of the pull-based algorithm because of suppressed request messages in
overlapping neighborhoods. However, when comparing the latency of the data
itself, the values for both algorithms are almost identical because with Neidas
nodes are able to provide also data requested from their neighbors. The data
latency of the push-based algorithm, of course, is even shorter, since with this
algorithm nodes do not wait for requests before they send their data. The values
for the data latency may seem comparatively high given the duration of the
request rounds of 10 s. However, these numbers are average values until the data
from all neighboring nodes has been received. Due to lossy links and collisions,
some nodes have to send their data several times.

Fig. 7 shows the average number of bytes transmitted for different node den-
sities. To get these values we have varied the total number of nodes from 25 to
200. The size of the area is kept constant and always 40% of the nodes request
data from their neighbors. The figure shows that the values for the pull-based
algorithm increase by about 38% with higher densities until all nodes are in the
neighborhood of at least one node requesting data. For the push-based algorithm
the number of bytes is constant, since each node sends its data independent of
other ones. With Neidas , the number of bytes transmitted by each node even
decreases by about 30% with higher densities although in these cases more nodes
have to send their data. This is because more nodes overhear packets from their
neighbors which avoids sending the same request several times.

As the results show, Neidas is suitable for both heterogeneous and homoge-
neous networks. Considering the benefits such as the small number of transmitted
bytes shown in Fig. 5 and its ability to profit from high node densities (Fig. 7),
for many applications Neidas offers a good compromise between efficiency and
timely delivery of data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 13

5.3 Comparison with Hood

We have implemented a simple algorithm that builds a tree to route data to a
sink node with both Hood and TinyXXL/N . In this example all nodes request
their neighbors’ depth in the routing tree. They then select the neighbor with
the smallest depth as their parent and adjust their own depth value. Using
Hood we have implemented two versions: The first one minimizes the number
of messages by solely relying on Hood’s auto-push policy that only broadcasts
updates when the data changes. The second one is able to deal better with
new nodes and transmission failures of lossy links by periodically requesting the
neighbors’ values in addition to the automatic updates. This version resembles
more closely the properties of Neidas but with its forwarding of neighbor data
Neidas is able to provide even better reliability. Depending on the properties
required by the application, the solution actually implemented by the developer
will probably lie somewhere within the boundaries defined by the two Hood
versions. The TinyXXL/N implementation, however, automatically integrates
Neidas so that the application developer does not have to deal with these low-
level details.

Both the Hood versions and the TinyXXL/N version of the code use equiv-
alent neighborhood management algorithms. These algorithms do not send any
information themselves but use the node IDs transmitted with each request and
data packet. It is an integral part of Hood’s concepts that the neighborhood
management algorithm has to be written by the application developer whereas
in the TinyXXL/N version Neidas ’s default neighborhood management algo-
rithm is used.

Fig. 8 visualizes the total number of bytes sent by the Hood versions and the
TinyXXL/N version for different node densities. Since the standard push-only
version of Hood sends data just when it is modified, this algorithm transmits
the smallest number of bytes. However, it is not able to deal with transmis-
sion failures and newly deployed nodes as it sends data only once. These two
properties are fulfilled by the other two versions of the application. Therefore,
these implementations offer different functionality and can hardly be compared.
Thus we limit the following discussion to the TinyXXL/N variant and the Hood
version including data pulls.

As expected, the number of bytes sent by TinyXXL/N decreases with high
densities since it is based on Neidas . In contrast, the Hood version does not make
use of overhearing messages and, therefore, has to transmit significantly more
data if the number of nodes in radio range increases. For the highest node density
the TinyXXL/N version sends only 24% of the number of bytes transmitted by
Hood.

When compiled for Mica2 nodes, our sample application including the oper-
ating system components reserves 810 bytes of RAM in the Hood versions and
just 608 bytes in the TinyXXL/N version (25% less). Most of TinyXXL/N ’s
savings are due to fewer variables used in the marshaling components as well as
in the components storing data. With RAM sizes of just a few kilobytes such
optimizations are crucial in order to be able to create complex applications.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 A. Lachenmann et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 5 10 15 20 25 30 35 40

A
vg

. n
um

be
r

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Avg. number of nodes in radio range

Hood auto-push
Hood push/pull

TinyXXL/N

Fig. 8. Bytes transmitted compared
with Hood

 0

 1000

 2000

 3000

 4000

 5000

 25 30 35 40 45 50

A
vg

. n
um

be
r

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Total number of nodes

Application-specific
TinyXXL/N

TinyXXL/N with piggybacking

Fig. 9. Bytes transmitted for the Sense-
R-Us application

From a developer’s point of view creating the application with TinyXXL/N
incurs significantly less overhead. The routing tree algorithm described above
was implemented in 176 lines of code with Hood (for the version including data
pulls) vs. 88 lines of code with TinyXXL/N . This means that the TinyXXL/N
implementation needs 50% fewer lines of code than the Hood implementation.
Most of these savings, however, are due to the fact that Hood requires the de-
veloper to implement a separate neighborhood management algorithm, which is
already present in the TinyXXL/N solution. Although such numbers do not nec-
essarily allow to draw conclusions about the complexity of the code, they can give
a rough estimate about the effort needed by the application developer. Consider-
ing that Hood already reduces complexity compared to manual implementations
[8], the overhead reductions of TinyXXL/N are even more significant.

5.4 Integration in Sense-R-Us

Sense-R-Us [2] is an application that uses a sensor network to provide the func-
tionality of a smart environment where the current location of researchers in our
department can be queried. In addition, Sense-R-Us is able to detect meetings
using both sensory inputs and information about neighboring nodes. In this ap-
plication there are stationary nodes placed in rooms and mobile ones that are
carried by persons. The mobile nodes use neighborhood data from the station-
ary ones to localize themselves by requesting information about the location of
neighboring nodes. A mobile node’s location is set to the value of a neighboring
node, which has been selected using the received signal strength.

We compare an implementation of Sense-R-Us that has been built using
TinyXXL/N with the original one for which neighborhood data sharing has
been implemented manually. This version uses Sense-R-Us’s custom querying
protocol, which tries to reduce the number of messages by intelligently selecting
the nodes to be queried. However, it does not leverage broadcast communication
and comes at the expense of significant development overhead.

In our experiments we simulated up to 50 nodes of which 22 ones are sta-
tionary. The remaining nodes are mobile and move using a random walk model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Versatile Support for Efficient Neighborhood Data Sharing 15

Fig. 9 shows the number of bytes transmitted by the application-specific imple-
mentation of Sense-R-Us, a version using TinyXXL/N , and another TinyXXL/N
version that takes advantage of the piggybacking optimization described in Sec-
tion 3.4. These numbers also include packets transmitted by other components,
e.g., to discover neighboring nodes. As the figure shows, for low densities with
no or only few mobile nodes the performance of the TinyXXL/N versions is
worse compared to the optimized application-specific solution. If, however, the
node density is increased, the TinyXXL/N version can take advantage of over-
hearing messages and the number of bytes sent by each node decreases. For the
application-specific implementation, in contrast, the number of bytes sent in-
creases by almost 50% when adding more mobile nodes. The reason for this is
that this implementation relies solely on point-to-point communication. There-
fore, separate messages might have to be sent even if other nodes have similar
requests. If TinyXXL/N ’s piggybacking optimization is used, the number of
bytes transmitted is reduced by between 8% and 13% compared to the other
TinyXXL/N implementation. These savings are due to the reduced number of
packets sent by this variant. Although piggybacking could also be incorporated
in an application-specific solution, using TinyXXL/N has the advantage that it
comes “for free” without requiring the developer to manually implement it.

6 Conclusions and Future Work

In this paper we have presented Neidas , a pull-based algorithm for neighborhood
data sharing. Compared to other approaches it provides better efficiency by sup-
pressing duplicate requests in the neighborhood. If the node density is high, the
average number of bytes transmitted by each node decreases. We have integrated
this algorithm with TinyXXL, an extension of the nesC programming language
for cross-layer data sharing. The combined system, TinyXXL/N , is a compre-
hensive system for both data exchange among components and neighborhood
data sharing. Using Neidas as its basis TinyXXL/N offers efficient data sharing
at largely reduced development costs. For example, in heterogeneous networks
the developer of a node providing data does not even have to be aware that this
data might be required by another one. We are convinced that this combined
system will lead to efficient applications which are developed with reduced effort.

Regarding future work we plan on making Neidas adaptable to the density
of nodes requesting data by dynamically adjusting the threshold kr. This will
further reduce the number of requests in dense networks while increasing the
share of nodes in the neighborhood that receive a request.

References

1. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless
networks. In: Proc. of the Conf. on Mobile Comp. and Netw. (2000) 243–254

2. Minder, D., Marrón, P.J., Lachenmann, A., Rothermel, K.: Experimental construc-
tion of a meeting model for smart office environments. In: Proc. of the Workshop
on Real-World Wireless Sensor Networks, SICS Technical Report T2005:09. (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 A. Lachenmann et al.

3. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor
networks. In: Proc. of the Int’l Conf. on Embedded Netw. Sensor Systems. (2005)

4. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proc. of the Int’l Conf. on Mobile
Computing and Networking. (1999) 174–185

5. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In: Proc. of the
1st Symp. on Networked Systems Design and Implementation. (2004) 15–28

6. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol
for network programming at scale. In: Proc. of the 2nd Int’l Conf. on Embedded
Networked Sensor Systems. (2004) 81–94

7. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Proc. of the Int’l Conf.
on Mobile Computing and Networking. (2000) 56–67

8. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proc. of the 2nd International Conference on Mobile
Systems, Applications, and Services. (2004) 99–110

9. Welsh, M., Mainland, G.: Programming sensor networks using abstract regions.
In: Proc. of the Symp. on Network Systems Design and Impl. (2004) 29–42

10. Franklin, M., Zdonik, S.: A framework for scalable dissemination-based systems.
In: Proc. of the 12th Conf. on Object-Oriented Programming, Systems, Languages,
and Applications. (1997) 94–105

11. Lachenmann, A., Marrón, P.J., Minder, D., Gauger, M., Saukh, O., Rothermel, K.:
TinyXXL: Language and runtime support for cross-layer interactions. In: Proc. of
the Conf. on Sensor, Mesh and Ad Hoc Comm. and Networks. (2006) 178–187

12. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proc. of the
Conf. on Programming Language Design and Implementation. (2003) 1–11

13. Tolle, G., Culler, D.: Design of an application-cooperative management system for
wireless sensor networks. In: Proc. of the Second European Workshop on Wireless
Sensor Networks. (2005) 121–132

14. Mottola, L., Picco, G.P.: Logical neighborhoods: A programming abstraction for
wireless sensor networks. In: Proc. of the Int’l Conf. on Distributed Computing in
Sensor Systems. (2006) 150–168

15. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless
sensor networks. In: Proc. of IEEE INFOCOM 2002. (2002) 1567–1576

16. Polastre, J., Hui, J., Levis, P., Yhao, J., Culler, D., Shenker, S., Stoica, I.: A
unifying link abstraction for wireless sensor networks. In: Proc. of the 3rd Int’l
Conf. on Embedded Networked Sensor Systems. (2005)

17. Shnayder, V., Hempstead, M., Chen, B.r., Allen, G.W., Welsh, M.: Simulating the
power consumption of large-scale sensor network applications. In: Proc. of the 2nd
Int’l Conf. on Embedded Networked Sensor Systems. (2004) 188–200

18. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: Proc. of the 2nd Int’l Conf. on Embedded Networked Sensor Systems.
(2004) 95–107

19. Titzer, B., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with
precise timing. In: Proc. of the Conf. on Information Proc. in Sensor Netw. (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 17 – 33, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Energy-Efficient K-Hop Clustering Framework for
Wireless Sensor Networks

Quanbin Chen, Jian Ma, Yanmin Zhu, Dian Zhang, and Lionel M. Ni

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology

{chenqb, majian, zhuym, zhangd, ni}@cse.ust.hk

Abstract. Many applications in wireless sensor networks (WSNs) benefit
significantly from organizing nodes into groups, called clusters, because data
aggregation and data filtering applied in each cluster can greatly help to reduce
traffic. The size of a cluster is measured by the hop distance from the farthest
node to the cluster head. Rather than 1-hop clustering, K-hop clustering is
preferred by many energy-constrained applications. However, existing solutions
fail to distribute clusters evenly across the sensing field, which may lead to
unbalanced energy consumption and network inefficiency. Moreover, they
incur high communication overhead. We propose an Evenly Distributed
Clustering (EDC) algorithm. Constrained by the maximum cluster size K, EDC
distributes clusters uniformly, and minimizes the number of clusters. By
introducing a relative synchronization technique, EDC converges fast with low
communication overhead. It also helps to improve the successful transmission
rate from nodes to their cluster heads. The simulation results indicate that EDC
outperforms other existing algorithms.

1 Introduction

Many applications for wireless sensor networks (WSNs), such as habitat monitoring
[1], require each sensor node to sample the environment periodically and report the
sensed data back to the base station. It is noticed that spatial locality exists prevalently
among sensed data in these applications. Traffic can be reduced by data aggregation
and data filtering techniques. Therefore, sensor networks can benefit significantly
from organizing nodes into groups, called clusters. In each cluster, there is usually
one responsible node, called cluster head. Other nodes in the group will send data to
the cluster head, instead of reporting directly to the base station.

The clustering problem has been studied in the literature of WSNs. Most of the
algorithms adopt heuristic approaches [12] [17], in which each sensor node exchanges
information with its neighbors. 1-hop clusters can be formed based on 1-hop
information. Similarly, by collecting information from all the nodes within 2 hops, 2-
hop clusters can be made. However, 1-hop or even 2-hop clustering generates too
many clusters, which may lead to energy inefficiency.

We define K-hop clustering, in which each node is either a cluster head or at most
K hops away from a cluster head. K is decided according to the requirements of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 Q. Chen et al.

different applications. For example, when monitoring the temperature in a weather
study application, the system requires only one reading from each sensing region, say
3000m2, in a sampling cycle, because the temperature in a region varies slightly.
Thus, if each sensor node has a communication range roughly between 10 meters to
15 meters, 3-hop clusters can approximate these equal-sized sensing regions and one
temperature report from each cluster head is sufficient. However, optimizing the
number of K-hop clusters, with a given K, is a well-known NP-complete problem [3].

Some algorithms, like MaxMin [3], attempt to address the K-hop clustering
problem in the context of wireless ad hoc networks. However, the communication
overhead in MaxMin is quite high, and the distribution of the clusters highly depends
on the node ID distribution. The first K-hop clustering algorithm in wireless sensor
networks [6] adopts a stochastic approach, which has very low traffic overload.
Unfortunately, the distribution of clusters is rather poor. In wireless sensor networks,
a good clustering should distribute clusters evenly across the sensing field, minimize
the number of clusters in order to achieve energy efficiency, and maximize the
successful transmission rate from the member nodes to their corresponding cluster
heads. The extremely challenging issue lying in the clustering problem of wireless
sensor networks is how to achieve good cluster distribution with small
communication overhead.

In this paper, we propose an algorithm, namely Evenly Distributed Clustering
algorithm (EDC), to establish a K-hop clustering network framework. It combines the
positive features of traditional heuristic approaches and stochastic approaches, which
can generate good cluster distribution and introduce small communication overhead,
respectively. Furthermore, EDC can minimize the number of clusters and evenly
distribute clusters across the sensing field. One of our main contributions is to reduce
communication overhead significantly by introducing a relative synchronization
technique. In addition, EDC helps to improve the successful transmission rate from
nodes to their cluster heads. It can be employed independently of network topology,
network scale, and node density. To the best of our knowledge, this is the first work to
evenly distribute clusters across the sensing field, to minimize the number of K-hop
clusters, and to concern the successful transmission rate between member nodes and
cluster heads in order to achieve an energy-efficient network framework in wireless
sensor networks.

The rest of the paper is organized as follows. Section 2 highlights the related work.
We discuss the design principles and introduce basic assumptions in Section 3.
Section 4 describes the Evenly Distributed Clustering algorithm (EDC) in detail. The
simulation results and evaluations are illustrated in Section 5. Section 6 concludes the
paper and lists some future work.

2 Related Work

Many efforts have been devoted to network clustering of ad hoc networks. From the
perspective of algorithm approaches, there are three categories. In the first category,
all the nodes have a global knowledge of the network. Decisions are made
independently by each node [4] [5]. This approach is definitely not suitable for
wireless sensor networks. In the second category, every node only has the knowledge

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 19

51 2 30 6 9874

Fig. 1. Unevenly distributed cluster heads generated by the MaxMin algorithm. (K=3).

51 2 30 6 9874

Fig. 2. Evenly distributed cluster heads in the ideal case. (K=3).

about its neighbors, or 2-hop neighbors. Cluster heads will be elected according to
this local information [7] [8] [9]. This approach is adopted by many 1-hop clustering
heuristics as it can achieve good network clustering with low overhead. Third, nodes
do not need to exchange information with neighbors when self-electing cluster heads.
Stochastic decisions are made independently upon some pre-determined parameters
[6] [10]. This scheme introduces low communication overhead but produces poor
distribution of the clusters.

From the perspective of parameters used in cluster head selection, early work
usually employs node ID [3] [8] [9]. Node degree [11] is introduced in order to
minimize the number of clusters; mobile status is taken into account in the context of
mobile ad hoc networks aimed to maintain stable cluster organization; remaining
energy [10] is considered to prolong the network lifetime. In some algorithms, all the
above factors are integrated such that they are adaptive to different contexts [7].

Topology control [12] [13] [14], including the dominating set problem [15] [16]
[17], is similar to clustering. It tries to select some nodes to form the network
backbone. Other nodes are guaranteed to reach the backbone nodes within one hop.

However, most work mentioned above can only construct 1-hop clusters. In
contrast, MaxMin [3] generates K-hop clusters. Every node elects the one with the
largest ID in its K hops as a cluster head, and then associates to the head with the
smallest ID, in order to balance the cluster size. However, communication overhead is
relatively high, particularly when K is large. In addition, the clusters are not evenly
distributed. It fails in some pathological cases, as shown in Fig. 1, in which node ID
are assigned orderly according to the topology.

LEACH [10] is the first clustering solution specific in the context of wireless
sensor networks. The algorithm does not require any communication overhead in
electing cluster heads. Instead, each sensor node declares itself as a head with some
probability. However, it is not guaranteed that every node is within K hops of a
cluster head, and cluster heads cannot be evenly distributed by the probabilistic
method. Moreover, the implementation of LEACH is constrained by two assumptions.
First, the network size and the number of clusters are known in advance on each node.
Second, all the nodes are well synchronized such that cluster heads can be re-elected
periodically to balance energy consumption. A similar design is adopted in [6]. Each
sensor node announces itself as a cluster head with a probability q. After the self-
announcement process, the nodes lying farther than K hops away from any existing
cluster heads will become cluster heads. Based on a mathematical model, the best
q and K are calculated to minimize energy consumption in the many-to-one

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 Q. Chen et al.

communication pattern. This algorithm, however, fails to provide even distribution of
cluster heads, and may elect a large number of cluster heads.

3 Preliminaries

The first characteristic of a good K-hop clustering we discussed is to evenly distribute
cluster heads across the sensing field. Evenly distributed clusters can balance energy
consumption and achieve fair data fidelity, but few existing solutions focus on the
even distribution of cluster heads. For example, in Fig. 1, all the nodes except the left
three are elected as cluster heads if the MaxMin algorithm is applied. Indeed, only
two cluster heads are sufficient in the ideal case, as Fig. 2 depicts. To formalize the
even distribution feature, we introduce some restrictions as follows.

Condition 1: Every node is either a cluster head, or within K hops from one cluster
head.

Condition 2: Every two cluster heads must be at least K+1 hops away from each
other.

Condition 1 is the basic requirement of K-hop clustering. Condition 2 restricts that the
distance between any two cluster heads is not shorter than K+1. These two conditions
implicitly help to achieve an even distribution of cluster heads, while to minimize the
number of cluster heads.

The second characteristic of a good K-hop clustering is to minimize
communication overhead when forming clusters. When each node holds the
information of all its K-hop neighbors, it might not be difficult for each node to
determine whether to be a head or a member node. However, huge communication
overhead occurs in this case. To select K-hop cluster heads based on 1-hop neighbors’
information is the key issue we will solve in the EDC algorithm.

The third characteristic is to improve the successful transmission rate from the
nodes to their corresponding cluster heads. Intuitively, a node that is located at the
center of a cluster, and has good link quality to its neighbors should be an ideal head.
Thus, a clustering parameter should be well designed to describe the suitability of a
node as a potential head.

Before describing the EDC algorithm, we make several assumptions on wireless
sensor networks as follows:

� Each node is stationary.
� The neighborhood of each node is fixed.
� Each node has a unique ID.
� Each link is symmetric.
� Messages broadcast by a node can be received correctly by all its neighbors.
� No location information is available on each node.
� No synchronization service is required.
� Neither routing nor multi-hop broadcast service is required.

The first three assumptions guarantee that we have a network topology which can be
depicted by a graph. We mainly use a graph (it is not necessary to be a planar graph.)
to help us analyze the algorithm. Stationary deployment of nodes is reasonable in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 21

wireless sensor networks, and asymmetric links can be filtered by some techniques in
the MAC or the routing layer [2]. However, the fixed neighborhood can hardly be
maintained in wireless sensor networks as the links are highly dynamic. Moreover,
reliable broadcast is impractical in real environments. We claim that we make these
assumptions in order to simplify the analysis of the algorithm. We will relax some of
them to investigate the performance in simulation.

4 EDC Algorithm

In this section, we first present the basic idea of EDC, and introduce the data structures
that each node maintains. Second, the key part of EDC, the head selection criteria is
detailed. Third, we discuss some parameters defined in the EDC algorithm. At last, we
prove the correctness of the algorithm.

4.1 Basic Idea

EDC is a heuristic approach, in which each node only exchanges its head selection
with its neighbors. Based on neighbors’ selection results, each node chooses the
nearest head as its cluster head, satisfying Condition 1 and Condition 2. Selection will
be updated once a node hears its neighbors’ new selections. Finally, the algorithm
finishes when there is no more update in the network, and every node is either a cluster
head or a member node.

Fig. 3. Three states of a node in EDC

There are three states for nodes in EDC shown in Fig. 3, which are HEAD,
MEMBER, and SUSPENDED. A node has declared itself to be a cluster head in the
HEAD state, or has joined a cluster as a member node in the MEMBER state. A node
in the SUSPENDED state is neither a cluster head nor a member node. Nodes may
shift among the three states during the algorithm execution. When the algorithm
terminates, each node is either in HEAD or in MEMBER.

For each node, the state is initialized as SUSPENDED, and an initialization timer
tinit is triggered. When the timer expires, the node will change from SUSPENDED to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 Q. Chen et al.

HEAD, and broadcast a notification to declare itself to be a cluster head. If a suspended
node receives neighbors’ notifications and joins a cluster before timeout, it will shift to
MEMBER, and also broadcast a notification of its selection. A head node may change
to a member node when it finds out that there is another head existing within K hops. If
a member node originally joining a cluster cannot find any available head on its
neighbors’ new selections, it will be suspended and a timer twait is set.

When a node receives a notification from its neighbor, it reselects the cluster head,
sets the state, and broadcasts a notification if there is any update.

4.2 Data Structures

The data structures of each node comprise of a number of locally estimated parameters,
as well as the selection results of the node’s 1-hop neighbors.

Clustering Parameter p. It estimates the suitability of a node as a potential head.
Generally, the larger the p is, the more likely the node will become a cluster head.
Clustering parameter is ready on commencement. We will discuss its selection later.

Initialization Timer tinit. It is set on each node when the algorithm is initialized. We
try to fine-tune it for fast convergence.

Suspending Timer twait. When a node changes from MEMBER to SUSPENDED, a
suspending timer is set.

Cluster Head Info. This is the information about the cluster head that a node
chooses to associate to. It includes the head ID (h_id), the head’s clustering parameter
(h_p), the hop count (h_c), and the parent ID (p_id).

Neighbor Table. If a node has m 1-hop neighbors, its neighbor table has m entries.
Each entry includes a neighbor ID (n_id), and the neighbor’s cluster head info.

Notification. It is the message broadcast by nodes, which is supposed to be received
by 1-hop neighbors only. Notification contains the node’s cluster head info.

4.3 Head Selection Criteria

The most critical part of the EDC algorithm is to select the cluster head upon 1-hop
neighbors’ selection results in order to form K-hop clusters, and restrict every two
cluster heads at least K+1 hops away with low communication overhead. To clearly
illustrate the EDC design, it is necessary to introduce the following definitions.

Definition 1: A node’s reachable heads are the heads chosen by its neighbors.
Meanwhile, the following two conditions must be satisfied: 1) the head is reachable
within K hops; 2) if a neighbor chooses the node as the parent, the neighbor’s head
selection should be ignored. The first constraint guarantees to generate K-hop clusters,
and the second constraint is to avoid the slow convergence problem.

Definition 2: Head A is stronger (weaker) than head B, if the clustering parameter of
A is larger (smaller) than that of B. If the clustering parameters of A and B are equal,
the node ID will be used to break the tie.

Definition 3: Reachable heads of a node can be divided into two groups, survivable
heads and dying heads. Dying heads are the heads which should change back to
MEMBER from the node’s point of view, and other heads are survivable heads. Every
pair of its survivable heads is at least K+1 hops away from each other.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 23

__

Sorting Head Candidates
1. Sorted Candidate Head List (CHL) = NULL
2. for each neighbor
3. if (p_id != node ID && h_c < K)
4. CHL.InsertSort (h_p, h_id, h_c) *

Filtering Dying Heads
1. num = length of CHL
2. new flags[num], set 1 to each item
3. for i = num-1 : 0
4. if (flags[i] == 0) continue
5. for j = 0 : i – 1
6. if (CHL[i].h_c + CHL[j].h_c + 2 <= K)
7. flags[j] = 0

Getting Survivable Heads
1. for i = 1:num
2. if (flags[i] == 1)
3. Add CHL[i] to survivable heads set
__

* CHL is sorted in the ascending order of clustering parameter and
node ID. The item being inserted with a head ID which has
already existed in CHL will be ignored, but the hop count will be
updated to the smaller one.

Fig. 4. Pseudo-code to get survivable heads set

Suppose that some nodes have declared to be cluster heads, and every other node
chooses the nearest reachable head as its cluster head. If there exist two heads within
K hops, the conflict can be detected by some nodes between these two heads. The
stronger one becomes a survivable head according to the definition, while the weaker
one becomes a dying head. We show how to filter dying heads locally as depicted in
Fig. 4. Each node sorts its reachable heads in the sorted candidate head list (CHL)
according to clustering parameter. Node ID is used to break the tie. The “strongest”
head is chosen from CHL to delete the heads which are lying within K hops from it.
After filtering, the “strongest” head will be deleted from CHL, and put into the
survivable heads set. Then, the remaining “strongest” head in the CHL is chosen to
eliminate the dying heads again, after which it is deleted from CHL and added to the
survivable heads set. The process will continue until the CHL has no head left.

The straightforward way to notify dying heads is to generate multi-hop messages
destined to those dying heads. It, however, incurs traffic overhead, and it requires
one-to-one routing service which is usually unavailable. Instead of doing this, the
node in EDC just broadcasts its selection result to the 1-hop neighbors. The selection
result reflects the conflicts and forces the neighbor nodes which have chosen the
dying heads as the cluster heads to reselect. Finally, dying heads will detect the
conflict by themselves, and then change to member nodes.

The selection criteria for each node are listed as follows. If the survivable heads set
is not null, the nearest head in the survivable heads set will be chosen as the
candidate. Node ID will be applied to break the tie.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 Q. Chen et al.

5 1 2

3 0

4

h_id h_c p_id state
0 0 0 S

Node 0

4 3 3 M
3 1 3 M

0 0 0 S

h_id h_c p_id state
1 0 1 H

Node 1

5 1 5 M

h_id h_c p_id state
0 0 0 S

Node 2

5 2 1 M
4 1 4 M

h_id h_c p_id state
3 0 3 H

Node 3

4 2 2 M
5 3 2 M

h_id h_c p_id state
4 0 4 H

Node 4

5 3 2 M

h_id h_c p_id state
5 0 5 H

Node 5

Fig. 5. An example of the head selection process of EDC when K=3. Arrows represent the
notifications, which trigger updates.

Rule 1: (For member nodes) set the candidate as the cluster head; broadcast a
notification if the head selection is updated.

Rule 2: (For suspended nodes) change to a member node after choosing the candidate
as the cluster head; broadcast a notification; stop the timer tinit or twait.

Rule 3: (For head nodes) if the node is weaker than the candidate, it will change to a
member node and broadcast a notification. Otherwise, no change is needed.

If the survivable candidate heads set is null, there’s no available candidate.

Rule 4: (For suspended and head nodes) no change.

Rule 5: (For member nodes) change to SUSPENDED; broadcast a notification; set a
timer twait.

An illustrative example is shown in Fig. 5. At a snapshot, node 0 and node 2 are still
in the initialized SUSPENDED state, while the timers tinit of node 1, 3, 4, and 5 have
just expired. We assume the clustering parameters to satisfy p5 > p4 > p3 > p2 > p1 >
p0. For node 2, it first selects node 4 as its cluster head, and broadcasts a notification.
When node 3 receives this notification, it is aware that a stronger head 4 exists and
then changes back to a member node. Later, node 2 updates its selection to head 5 and
broadcasts a notification again. After that, node 4 changes to a member node, and
node 3 updates its selection to head 5. Then, node 1, 2, 3, 4 are member nodes which
all choose node 5 as their cluster heads. Node 0 cannot find any available head from
its neighbor node 3, and consequently it is suspended with a random timer twait being
set. After this timer expires later, node 0 will declare itself to be a head, and finally
node 3 will choose node 0 as its cluster head, while others remain unchanged.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 25

4.4 Parameter Selection

4.4.1 Clustering Parameter
Clustering parameter p is defined to estimate the suitability of each node as a potential
head. In EDC, we use it to determine which heads should be survivable when there are
conflicts. Note that the selection of the clustering parameter will not affect the
correctness of EDC, because node ID is the second parameter to break the tie.

In a cluster of sensor nodes, we mainly concern that member nodes can reach the
cluster head through the routes with good path quality. In other words, the successful
transmission rate from member nodes to the cluster head can be maximized. Therefore,
it is appropriate to select the node with the best average path quality to all its K-hop
neighbors as the cluster head. However, it is costly to obtain the path quality from a
node to each of its K-hop neighbors. We use the following definition instead.

Definition 4: 1-hop connectivity of a node refers to the sum of link quality estimated
to each of its 1-hop neighbors.

{ }1 , : '

i
connectivity j ij id i s neighbor

p q− ∈
=∑

where qj,i represents the link quality from node j to node i.

Definition 5: K-hop connectivity of a node refers to the weighted sum of 1-hop
connectivity of all the nodes within its K-1 hops (including the node itself).

{ }
1

 : ' (1)
, 1

j
connectivityi

K connectivity j id i s K hop neighbor
i j

p
p

d
−

− ∈ − −
=

+∑

where di,j is the hop distance between node i and node j.

We choose K-hop connectivity as the clustering parameter p in EDC, as it can reflect
the connectivity inside the node’s K-hop neighborhood. With di,j, the nodes with
many 1-hop neighbors are preferred. It does make sense from the aspect of higher
successful transmission rate from nodes to head, and load balance among nodes.
However, communication overhead is incurred to get the K-hop connectivity
parameter, when K is larger than one. Particularly when K is large, the overhead
cannot be ignored. In order to reduce traffic, we may adopt 1-hop connectivity, or
fixed small hop connectivity instead. We will discuss them in simulation.

We do not aim to solve the optimization problem in the clustering, and instead we
propose a simple yet effective way to estimate the suitability of each potential head.
We argue that link quality is almost a free resource which can be usually attained
from routing service, such as in TinyOS [2]. Asymmetric links also can be filtered in
it. Connectivity-like parameter may cause some clusters having too many member
nodes, which is not expected in wireless ad hoc networks. Fortunately, this is
significantly alleviated in sensor networks, because topology control services can
adjust the nodes to maintain proper density. In addition, our goal is to evenly
distribute cluster heads across the sensing field, instead of balancing the number of
nodes among clusters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 Q. Chen et al.

4.4.2 Initialization Timer
If there is no initialization timer, all the nodes declare themselves to be cluster heads
at the same time. In this case, EDC can still generate a good clustering result which is
guaranteed by the head selection criteria. However, we introduce the initialization
timer in order to reduce most of the communication overhead.

Suppose all the nodes are suspended. The strongest node in the network declares
itself to be a cluster head, forcing all the nodes in its K-hop neighborhood to associate
to it. Then, the remaining strongest node which is still suspended, declares itself to be
another head, and its K-hop neighbors may choose it as their head. Generally
speaking, if the suspended nodes change to HEAD sequentially with a sufficient time
interval, communication overhead is minimized. There are no conflicted heads which
may lead to state fluctuation on nodes.

However, it is quite difficult to sort nodes globally, and synchronize them in the
network. To solve the problem, we introduce a sink-initiated relative synchronization
technique. It starts with the sink broadcasting a synchronization packet, containing an
assigned initialization timer T0

init and a clustering parameter p0. On receiving the
synchronization packet at the first time, each node will set its tinit according to the two
parameters, and broadcast a synchronization packet embedded with its own tinit and
clustering parameter p. The tinit is calculated by the following formula:

()i j j i
init init c unit rt t p p T T t= + − × − +

where t j
init and p j are the parameters contained in the synchronization packet sent by

one of its neighbors, Tunit is a constant referring to 1-hop transmission time of the
packet, Tc is another constant which is set to be KTunit (it implies that if node A is
much stronger than any of its K-hop neighbors, node A will push them to associate to
node A before their initialization timers expire.), and tr is a random number smaller
than Tunit. For the sink, p0 is an estimated average value of nodes’ clustering
parameters, and T0

init is:

()0 0
maxinit estimated cT p p T−= − ×

where pestimated-max is the estimated maximum cluster parameter, such that all the
calculated t j init are positive values.

EDC is initialized with the sink-initiated relative synchronization process. Every
node enters into SUSPENDED. Nodes with large cluster parameters set small timers,
which tend to make themselves to be cluster heads. On the contrary, nodes with small
parameters need to stay for a long time in SUSPENDED, waiting to join in clusters.

5 1 2 3 0

Fig. 6. Part of the network during EDC execution (K=3, p5 > p0)

4.4.3 Suspending Timer
In EDC, twait is set when a member node finds out that no reachable heads are available
from its neighbors’ selections. Even in this case, there may be a cluster head within the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 27

node’s K hops. As shown in Fig. 6, node 5 and node 0 are in HEAD, while node 1 and
node 2 choose node 5 as the cluster head, and node 3 chooses node 0. Assume that
node 5 has detected a stronger head existing in exactly K hops away. Hence, it changes
back to MEMBER. After that, node 1 cannot find any reachable head. Node 1 enters
SUSPENDED with a timer twait. Node 2 then switches to adopt node 0 as its cluster
head. If twait of node 1 expires before node 2’s new notification, it will cause useless
communication overhead. In this situation, if we set twait to be larger than two times
Tunit, state fluctuation can be avoided on node 1.

We set twait according to the following formula, and we will show the reason why
we choose it in the correctness part.

wait unit rt KT t= +

4.5 Correctness

EDC does not terminate in fixed rounds, so the convergence of it should be proved
first. Then, we show Condition 1 and Condition 2 proposed in Section 3 both can be
satisfied by EDC.

Definition 6: A node in stable state means it will not change its state. A head in a
stable state is called a stable head.

Lemma 1: There must appear at least one stable head during EDC execution.

Proof. Assume the sensor network has n sensor nodes, where pn > … > p2 > p1. If node
n is a head or will become a head in a snapshot during the algorithm execution, it must
be a stable head because it cannot change back to MEMBER or SUSPENDED
following Rule 3 and Rule 4. If node n will not be a head, node n-1 must be a stable
head once it changes to HEAD. If node n and node n-1 will not become heads, we
consider node n-2 then. By induction, if nodes n, n-1 … and 2 will not become heads,
node 1 must be a stable head when it enters the HEAD state. Therefore, there must
appear at least one stable head during EDC execution. □

Lemma 2: Nodes within K hops of a stable head cannot stay in or change to the
HEAD state, when twait > KTunit.

Proof. Assume node A is a stable head. Thus, there is no K-hop neighbor in HEAD
which has a larger clustering parameter than node A has.

Assume node B is a node within K/2 hops of node A. Case 1: if node B is in HEAD
or SUSPENDED, it will change to MEMBER on receiving neighbors’ notifications;
Case 2: if node B is a member node, it will choose node A as the cluster head only.
That is because, even if node B notices some reachable heads nearer than node A, these
heads must be dying heads, which are filtered by node B. Therefore, a stable head will
keep its K/2-hop neighbors selecting itself as the clustering head.

Assume node C is a node within K hops of node A, but more than K/2 hops away.
Case 1: if node C is in HEAD, it will change to a member node on receiving
neighbors’ notifications; Case 2: if node C changes from MEMBER to SUSPENDED,
it means that the head that node C chose last time has become MEMBER, and all node
C’s neighbors cannot provide any reachable head, shown in the example of Fig. 6.
Notifications claiming the lack of head selection will be propagated in a hop-by-hop

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 Q. Chen et al.

way for at most K/2 hops until reaching a node which holds the head information of
node A (all the nodes in K/2 hops of node A choose A as the cluster head.). Then, the
head information of node A will be included in notifications and propagated back to
node C in at most K/2 hops. The suspended node C obtains its new cluster head
information within K-hop transmission time (KTunit), before twait expires. Therefore,
nodes within K hops of a stable head, but more than K/2 hops away, may change their
states between MEMBER and SUSPENDED, but without entering HEAD. □

Theorem 1: The EDC algorithm converges.

Proof. Assume there are n nodes in the network, denoted by set N. According to
Lemma 1, there must appear a stable head during EDC’s execution, and all the nodes
within K hops of it cannot declare themselves to be heads by Lemma 2. Delete these
nodes and the stable head from set N. Applying Lemma 1 again on set N, there must
appear a stable head. Similarly, its K-hop neighbors cannot become heads. Delete them
from set N. After several rounds, set N becomes null, and all the nodes are either stable
heads, or cannot become heads any more.

Each non-head node chooses the nearest stable head as its cluster head. The
selection is determined since the set of stable heads is fixed. Therefore, no update
happens on nodes at this time. Thus, EDC converges. □

Corollary 1: Each node is either a cluster head or within K hops from at least a cluster
head.

Proof. Assume that the algorithm has already finished, and node A is not a cluster
head, while there is no cluster head within its K hops. From the definitions of states in
EDC, node A must stay in SUSPENDED, and its timer is still running. Therefore, it
will declare itself as a cluster head when the timer expires. That’s a contradiction. □

Corollary 2: Every two cluster heads are at least K+1 hops away.

Proof. Assume that the algorithm has already finished, and nodes A and B are two
cluster heads (pA > pB), which are in K hops from each other. There must be at least a
boundary node for each cluster. Assume that the boundary node C belongs to cluster B.
Node C must hold both the head information of A and B, as its neighbor from cluster A
should have notified it. Therefore, node C should have detected the conflict, which
would have forced it to join cluster A. That’s a contradiction. □

5 Performance Evaluation

In our simulation, we first build up a simulator according to the ideal network model
we proposed in Section 3. The link layer adopts CSMA used in TinyOS of Mica2
nodes [18]. It takes 25ms (Tunit) to transmit a notification, similar to Mica2 nodes. The
communication range of each sensor node is set to be exactly 15 meters, and traffic
collision and hidden terminal effect are ignored such that each broadcast packet can
be received correctly by neighbors. We set Tc to KTunit, and adopt node degree as the
clustering parameter. EDC is compared with three other algorithms: MaxMin [3],
Degree, and Random. Degree is an algorithm using MaxMin heuristic while utilizing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 29

node degree as the clustering parameter instead of node ID. Random is based on [6],
where q is calculated upon fixed K by a simple disk model. For example, if a node
can cover 10 area units in K hops, a sensing field with 100 units should be covered by
10 clusters. Thus, q is 10% in this situation. Three metrics are adopted to evaluate
these algorithms: 1) communication overhead measured by the number of
notifications generated in the network; 2) number of clusters; 3) cluster distribution
denoted by the standard deviation of cluster areas (cluster areas are calculated through

500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

Number of nodes (density fixed)

N
um

be
r

of
 n

ot
ifi

ca
tio

ns

EDC
MaxMin
Degree
Random

500 1000 1500 2000
0

20

40

60

80

100

120

140

Number of nodes (density fixed)

N
um

be
r

of
 c

lu
st

er
s

EDC
MaxMin
Degree
Random

Fig. 7. Impact of network size on communication
overhead

Fig. 8. Impact of network size on cluster
number

500 1000 1500 2000
0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes (density fixed)

S
ta

nd
ar

d
de

vi
at

io
n

of
 c

lu
st

er
 a

re
a

EDC
MaxMin
Degree
Random

2 4 6 8 10
0

0.5

1

1.5

2

x 104

K

N
um

be
r

of
 n

ot
ifi

ca
tio

ns
EDC
MaxMin
Degree
Random

Fig. 9. Impact of network size on cluster
distribution

Fig. 10. Impact of K on communication
overhead

2 4 6 8 10
0

50

100

150

200

K

N
um

be
r

of
 c

lu
st

er
s

EDC
MaxMin
Degree
Random

2 4 6 8 10

0.2

0.4

0.6

0.8

1

K

S
ta

nd
ar

d
de

vi
at

io
n

of
 c

lu
st

er
 a

re
a

EDC
MaxMin
Degree
Random

Fig. 11. Impact of K on cluster number Fig. 12. Impact of K on cluster distribution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 Q. Chen et al.

voronoi diagrams.). We simulate and evaluate EDC in different scenarios. For each
scenario, we randomly generate 10 connected sensor node topologies, and run four
algorithms. The average values will be depicted in the figures.

Scalability of EDC is investigated first. In this scenario, K is set to 3, and the
density of sensor nodes is fixed as 200 sensor nodes in 100m×100m. From Fig. 7, the
communication overhead of EDC is much smaller than that of MaxMin and Degree,
but larger than Random. EDC minimizes the cluster number, as it well controls every
two cluster heads to be at least K+1 hops away, shown in Fig. 8. It is interesting that
Degree adopts the same heuristic as used in MaxMin only with a different clustering
parameter, but the performance of Degree from the perspective of cluster number is
much worse than that of MaxMin. It is because the pathological case caused by node
ID distribution, which is said to be rare in a random deployed sensor network, appears
frequently when we change the clustering parameter from node ID to node degree. It
is highly possible, that node degrees of sensor nodes decrease monotonously from
dense area to sparse area. EDC also achieves the most even distribution of cluster
heads among the four algorithms, shown in Fig. 9.

We also measure the performance according to different K, when there are 1000
nodes in a 224m×224m sensor field. The density is kept the same. As we expect, the
value of K does not impact the communication overhead significantly in EDC and
Random, while communication overhead rises linearly in MaxMin and Degree as
shown in Fig. 10. EDC minimizes the cluster number for any K as depicted in Fig. 11.
Surprisingly, the cluster number generated by Random increases dramatically after
K=3. This is caused by the inherited drawbacks in probabilistic methods. When K
increases, the estimated number of heads becomes smaller. Hence, it is more difficult
to distribute heads evenly in the sensing field via a stochastic method. In this
situation, the uncovered nodes all try to declare themselves to be the forced heads [6].
That’s why the number of heads generated in Random increases with K. As Fig. 12
shows, EDC still outperforms others in terms of evenly distributed clusters.

Density is another important factor which may affect the performance of the
clustering algorithms. We fix the sensor field to 100m×100m and increase the
number of deployed sensor nodes from 100 to 500. As shown in Fig. 13 and Fig. 14,
communication overhead per node decreases as density increases in EDC and
Random, and the number of clusters almost stays the same in EDC when density
changes. The reason why density has a strong impact on the number of clusters in
Random can still be explained by the inherited drawbacks in probabilistic methods.

The relative synchronization technique we introduced tries to reduce
communication overhead by avoiding state fluctuation on sensor nodes. Intuitively, as
long as Tc is sufficiently large, there will not be any state fluctuation. Hence,
communication overhead is minimized. As Fig. 15 shows, if all the nodes declare to
be heads almost simultaneously (x=0), communication overhead is considerably high,
particularly when K is large. We prefer to choose Tc = KTunit rather than Tc = 10KTunit,
because it can reduce overhead dramatically, while not much delay will be
introduced. However, EDC with large Tc does not perform the best all the time. When
K is equal to one, EDC with x=0 outperforms others. This is because if every node
exchanges its information (declaring to be a head) with neighbors at the same time,
EDC terminates immediately with only one selection update on each node. If nodes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 31

declare to be heads sequentially, some nodes having several potential heads may
update their selections several times, and a number of notifications are sent out.

Finally, we relax some assumptions in the ideal network model in which nodes
have a fixed communication range and each packet is broadcast reliably. We set links
shorter than 10 meters with link error rate 10%, and the error rate increases linearly
from 10% to 100% for the links with a length from 10 to 15 meters. The packet
collision problem is simulated as well. In the simulation, we choose node ID, 1-hop
connectivity, 3-hop connectivity, and K-hop connectivity as the clustering parameter
respectively. With the generated network framework, each member node will
periodically send a packet to its cluster head. We utilize the best-effort routing
algorithm in [2] and measure the network efficiency on the packets received by
cluster heads. The network efficiency refers to the ratio of the traffic caused by
successfully received packets to all the traffic in the network. When node ID is
selected as the clustering parameter, network efficiency degrades quickly as K
increases as shown in Fig. 16. K-hop connectivity performs better than all the other
three clustering parameters. However, calculating K-hop connectivity incurs heavy
communication overhead. We recommend to use a small hop connectivity as the
clustering parameter when implementing EDC, such as 3-hop connectivity for each K,
when K is larger than 3.

100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Number of nodes (sensor field fixed)

N
um

be
r

of
 n

ot
ifi

ca
tio

ns

EDC
MaxMin
Degree
Random

100 200 300 400 500
0

10

20

30

40

50

60

70

Number of nodes (senosr field fixed)

N
um

be
r

of
 c

lu
st

er
s

EDC
MaxMin
Degree
Random

Fig. 13. Impact of density on communication
overhead

Fig. 14. Impact of density on cluster number

2 4 6 8 10
2000

3000

4000

5000

6000

7000

8000

K

N
um

be
r

of
 n

ot
ifi

ca
tio

ns

x = 0
x = K/2
x = K
x = 10K

4 6 8 10
0.2

0.4

0.6

0.8

1

K

E
ffi

ci
en

cy
node id
1-connectivity
3-connectivity
k-connectivity

Fig. 15. Impact of the selection of Tinit on
communication overload (Tc = xTunit)

Fig. 16. Impact of the selection of clustering
parameter

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 Q. Chen et al.

6 Conclusions and Future Work

Aiming to evenly distribute cluster heads across the sensing field in wireless sensor
networks, we propose the Evenly Distributed Clustering (EDC) algorithm. Our
simulation results have shown that EDC minimizes the number of clusters, and
achieves most evenly distributed clusters across the sensing field compared with other
approaches. In addition, EDC converges fast with communication overhead as low as
the stochastic approaches. With the clustering parameter of K-hop connectivity, EDC
provides an energy-efficient network framework.

To date, we just prove the EDC algorithm to be efficient by theory and simulations.
However, the real environment in wireless sensor networks may be quite different
from simulation settings. For example, the link quality is rather poor and varies over
time. It may cause that a node’s neighborhood keeps changing even during a short
period of time. Part of our future work will focus on applying EDC on real systems to
investigate the performance. In addition, nodes may join or leave the network
dynamically because of the deployment of new nodes or node failures. To handle the
dynamics of network topology, maintaining and updating clustering in real time is an
important problem we should tackle in the future. Moreover, we would like to achieve
load balance among all the nodes with low cost.

Acknowledgements

This work was supported in part by the Hong Kong RGC Grant HKUST6183/05E,
the Key Project of China NSFC Grant 60533110, and the National Basic Research
Program of China (973 Program) under Grant No. 2006CB303000. We wish to thank
the anonymous reviewers for their valuable comments on our work.

References

1. A. Mainwaring, J. Polastre, R. Szewczyk and D. Culler, "Wireless Sensor Networks for
Habitat Monitoring," in ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), 2002.

2. A. Woo, T. Tong and D. Culler, "Taming the Underlying Challenges of Reliable Multihop
Routing in Sensor Networks," SenSys, 2003.

3. A.D. Amis, R. Prakash, T.H. Vuong and D.T. Huynh, "Max-Min D-Cluster Formation in
Wireless Ad Hoc Networks," INFOCOM, 2000.

4. V.D. Park and M.S. Corson, "A Highly Adaptive Distributed Routing Algorithm for
Mobile Wireless Networks," INFOCOM, 1997.

5. C.E. Perkins and P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers," SIGCOMM, 1994.

6. S. Bandyopadhyay and E.J. Coyle, "An Energy Efficient Hierarchical Clustering
Algorithm for Wireless Sensor Networks," INFOCOM, 2003.

7. M. Chatterjee, S. Das and D. Turgut, "WCA: A Weighted Clustering Algorithm for Mobile
Ad hoc Networks," Journal of Cluster Computing, Special issue on Mobile Ad hoc
Networking, no. 5, pp. 193-204, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 33

8. D. Baker and A. Ephremides, "The Architectural Organization of a Mobile Radio Network
via a Distributed Algorithm," IEEE Transactions on Communications vol. 29, pp. 1694-
1701, 1981.

9. A. Ephremides, J.E. Wieselthier and D. Baker, "A Design Concept for Reliable Mobile
Radio Networks with Frequency Hopping Signaling," Proceeding of IEEE vol. 75, no. 1,
pp. 56-73, 1987.

10. W. Heinzelman, A. Chandrakasan and H. Balakrishnan, "An Application-Specific Protocol
Architecture for Wireless Microsensor Networks," IEEE Transactions on Wireless
Communications vol. 1, no. 4, pp. 660-669, 2002.

11. A. Parekh, "Selecting Routers in Ad-hoc Wireless Networks," SBT/IEEE International
Telecommunications Symposium, 1994

12. A. Cerpa and D. Estrin, "ASCENT: Addaptive Self-Configuring sEnsor Networks
Topologies," INFOCOM, 2002.

13. B. Chen, K. Jamieson, H. Balakrishnan and R. Morris, "Span: An Energy-Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,"
MobiCom, 2000.

14. Y. Xu, J. Heidemann and D. Estrin, "Geography-informed Energy Conservation for Ad
Hoc Routing," MobiCom, 2001.

15. J. Wu and F. Dai, "A Distributed Formation of a Virtual Backbone in Ad Hoc Networks
using Adjustable Transmission Ranges," ICDCS, 2004.

16. F. Dai and J. Wu, "On Constructing k-Connected k-Dominating Set in Wireless
Networks," IPDPS, 2005.

17. J. Ma, M. Gao, Q. Zhang, L.M. Ni and W. Zhu, "Localized Low-Power Topology Control
Algorithms in IEEE 802.15.4-based Sensor Networks," ICDCS, 2005.

18. P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer and D. Culler,
"The Emergence of Networking Abstractions and Techniques in TinyOS," NSDI, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing
from Multiple Sources to Multiple Sinks

in Wireless Sensor Networks

Pietro Ciciriello1, Luca Mottola1, and Gian Pietro Picco1,2

1 Department of Electronics and Information, Politecnico di Milano, Italy
{ciciriello,mottola}@elet.polimi.it

2 Department of Information and Communication Technology, University of Trento, Italy
picco@dit.unitn.it

Abstract. Initial deployments of wireless sensor networks (WSNs) were based
on a many-to-one communication paradigm, where a single sink collects data
from a number of data sources. Recently, however, scenarios with multiple sinks
are increasingly being proposed, e.g., to deal with actuator nodes or to support
high-level programming abstractions. The resulting many-to-many communica-
tion makes the existing solutions for single-sink scenarios inefficient.

In this paper, we propose a scheme for routing data efficiently from multiple
sources to multiple sinks. We first study the problem from a theoretical stand-
point, by mapping it to the multi-commodity network design problem. This al-
lows us to derive an optimal solution that, albeit based on global knowledge and
therefore impractical, provides us with a theoretical lower bound to evaluate de-
centralized solutions against. Then, we propose our own decentralized scheme,
based on a periodic adaptation of the message routes aimed at minimizing the
number of network links exploited. The resulting protocol is simple and easily
implementable on WSN devices. The evaluation of our implementation shows
that our protocol generates 50% less overhead than the base scheme without adap-
tation, a result close to the theoretical optimum we derived.

1 Introduction

Early deployments of wireless sensor networks (WSNs) were based on a many-to-one
paradigm. For instance, in habitat monitoring [1] a single sink node collects environ-
mental data from a large number of sensing devices. Therefore, communication proto-
cols are geared towards the efficient and reliable transmissions to a single receiver.

Recent developments, however, increasingly call for scenarios where the sensed data
must be delivered to multiple sinks. This network architecture is obviously required
when the same WSN is serving multiple applications, each running on distinct devices.
However, the need for multiple sinks arises also in other situations. For instance, re-
searchers are increasingly investigating the use of actuator nodes in WSNs [2]. Differ-
ent actuators are likely to need data coming from the same set of source nodes, as in the
case of an emergency signal and a water sprinkler that cope with a fire scenario by bas-
ing their actions on temperature readings sensed nearby. Moreover, multiple sinks are

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 34–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 35

(a) Two trees rooted at the two
sinks are built independently.

(b) Two branches of the trees
in Figure 1(a) are merged.

Fig. 1. A sample multi-source to multi-sink scenario

increasingly and inherently required to implement advanced applications and program-
ming abstractions. For instance, data collection is evolving into complex in-network
data mining [3]. In these applications, the mining process is distributed across the nodes
in the system, each collecting readings from different sets of data sources. Analogously,
to support high-level programming constructs (e.g., the proposals in [4, 5]), the physi-
cal nodes in the system need to communicate their data to multiple receivers, where a
different processing is performed.

The aforementioned scenarios naturally call for a many-to-many communication
paradigm. Unfortunately, existing protocols and algorithms for many-to-one commu-
nication are inherently ill-suited to cope efficiently with scenarios where the data needs
to be reported to multiple sinks. Indeed, available solutions deal with multi-sink sce-
narios by simply replicating the routing infrastructure. For instance, the well-known
Directed Diffusion protocol [6] sets up a tree along which sources report their data to
the single sink. Dealing with multiple sinks involves setting up a separate, independent
tree for each sink—a rather inefficient solution.

To see why this is a problem, consider the sample scenario with two sources and
two sinks illustrated in Figure 1(a). Node A reports data to both sinks, whereas node
B only transmits to sink C. To achieve multi-hop communication, two trees rooted at
the two sinks have been built independently (e.g., by flooding a control message from
each sink and having each node remember the reverse path to the sink, as in [6]). This
base solution exploits 13 networks links and 13 nodes for message routing. Moreover,
to report to the two sinks node A is forced to duplicate its data right at the first hop.

Figure 1(b) illustrates a better solution for the same scenario, based on the scheme
we describe in the rest of the paper, obtained by maximizing the overlapping between
the two sink-rooted trees. The two parallel branches starting from node A have been
merged in a single one, and node B leverages off this merged path instead of relying
on an independent one. As a consequence, the resulting topology now exploits only 8
network links and 9 nodes. By reducing the number of links exploited, we decrease
the amount of redundant information flowing in the network, and duplicate data only

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 P. Ciciriello, L. Mottola, and G.P. Picco

if and when strictly necessary. Moreover, less nodes are involved in routing messages.
This increases the system life-time, and reduces the contention on the wireless medium
and packet collisions, therefore ultimately increasing the reliability of communication.
Finally, the readings coming from the two sources can be packed in a single physical
message along the merged path, reducing the per-reading header cost.

Our goal in this paper is to support efficiently many-to-many communication from
multiple sources to multiple sinks. We do this by enhancing the well-established tree-
based solution, thus enabling easy integration of our solution into existing routing
schemes, e.g., [6]. Therefore, we assume the presence of a very basic routing infras-
tructure made of separate trees connecting the sources to the corresponding sinks. In
this case, a single path connecting a given source to each sink is always established.
This is a commonly adopted approach in WSNs, motivated by the reduction in network
traffic w.r.t. a solution exploiting multiple paths from a source to the same sink. Fur-
thermore, we do not make any assumption about the pairing of sources and sinks, as
it is indeed determined by the initial tree structure. Given this setting, our objective is
to enable efficient routing of messages from the sources to the corresponding sinks by
minimizing the number of network links exploited.

To achieve our goal, we put forth two main contributions:

1. We present a theoretical model of the problem, derived as a particular instance of
the multi-commodity network design problem [7, 8]. Thanks to this formulation,
we reuse available results and tools for integer programming to easily compute the
the theoretical optimal solution to our problem. The model and optimal solution are
illustrated in Section 2. The technique we use, however, assumes global knowledge
and is therefore derived in an off-line, centralized fashion, impractical for real WSN
deployments. Nevertheless, this theoretical result is valuable for providing a lower
bound against which to compare more efficient and decentralized solutions.

2. We present and evaluate our own decentralized solution, based on a periodic adap-
tation of sink-rooted trees. The adaptation consists of selecting a different neighbor
as the parent towards a given sink. The decision to adapt is taken locally by a node
and is based on the evaluation of a quality metric that aggregates into a single value
information disseminated by the node’s neighbors. Our adaptive protocol, whose
details are illustrated in Section 3, is simple enough to be easily implemented on
resource-scarce WSN devices. At the same time, as shown in Section 4, the eval-
uation of our implementation shows that it is able to reduce the network overhead
of about 50% w.r.t. the base solution with independent trees, a result close to the
theoretical optimum we derive in Section 2.

The paper is concluded by a survey of related efforts in Section 5 and by brief con-
cluding remarks in Section 6.

2 System Model and Optimal Solution

In this section we provide a mathematical characterization of our problem. Besides
providing a formal foundation for the results presented in this paper, in this section we
show how our model can be used to derive directly an optimal solution, using tools for
mathematical programming.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 37

System Model. We can straightforwardly model a WSN as a directed graph whose node
set N is composed of the WSN devices, and whose arc set A is obtained by setting an
arc (i, j) between two nodes i and j when the latter is within the communication range
of the former. (Note how this accounts for asymmetric links.)

With this notion of network, the problem of routing from multiple sources to multiple
sinks can easily be mapped to the multi-commodity network design problem [7]. In this
problem, given a set of commodities C, the goal is to route each commodity k ∈ C
(e.g., a physical good) through a network (e.g., a transportation system) from a set of
sources O(k) ⊆ N to a set of destinations D(k) ⊆ N , by minimizing a given metric.
Without loss of generality, as shown in [8], a commodity can be assumed to flow from a
single source to a single destination. In this case, since commodities generated from the
same source and directed to the same destination follow the same route, one can state
a one-to-one mapping between the route connecting any source-sink pair (o(k), d(k)),
and any commodity k.

Once the mapping to the multi-commodity network design problem is made, we can
model our problem as follows:

– We capture message routing with a set of decision variables:

rk
i,j =

{
1 if the route for the source-sink pair k contains arc (i, j)
0 otherwise

(1)

A value assignment ∀(i, j) ∈ A to these variables formally represents the route
messages must follow from the source o(k) to the sink d(k).

– A network link can be used for multiple source-sink pairs. The fact that an arc (i, j)
is used to route at least one message for a source-sink pair can then be captured as:

ui,j =
{

1 if ∃k ∈ C | rk
i,j = 1

0 otherwise
(2)

– The overall number of links used to route messages for a given set of source-sink
pairs is therefore:

UsedLinks(C, A) =
∑

(i,j)∈A
ui,j (3)

Our goal consists of finding the optimal set of routes used to deliver data messages from
sources to sinks. Formally:

Goal: to find the value assignment of rk
i,j , ∀k ∈ C, ∀(i, j) ∈ A that minimizes

the value of UsedLinks(C, A).

The relation between rk
i,j and ui,j defined in (2) captures the essence of the problem,

as well as the rationale of our distributed solution, presented next. Indeed, to mini-
mize UsedLinks one should strive for reusing as much as possible links that have al-
ready been used for other source-sink pairs, i.e., for which the cost ui,j is already paid.
In other words, we can minimize the number of links used by maximizing the overlap-
ping among source-sink paths. In Section 3 we present a protocol for achieving this
goal efficiently.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 P. Ciciriello, L. Mottola, and G.P. Picco

Variable Value

rC,A
C,B 1

rC,A
D,A 1

Remaining rC,A
i,j 0

(a) An assignment and topology
representing non-consistent routes
for a commodity representing the
source-sink path (C, A). Node B
and D do not obey to (4).

Variable Value

rC,A
C,B 1

rC,A
B,A 1

Remaining rC,A
i,j 0

(b) An assignment and topology
representing meaningful routes
for a commodity representing the
source-sink path (C,A). Constraint
(4) holds for every node.

Fig. 2. Sample assignments for rC,A
i,j

Although this formalization of the problem is simple and general, alternatives exist
and are discussed in Section 5.

Finding the Optimal Solution. Based on the model we just presented, we can derive
an optimal solution using techniques of mathematical programming, provided that we
specify the constraints to be satisfied by a meaningful solution. We first require that rk

i,j

and ui,j are integer, binary variables and that the following relation holds among them:

∀(i, j) ∈ A, ∀k ∈ C, rk
i,j ≤ ui,j

In our case, these constraints are satisfied by construction through (1) and (2).
Most importantly, we state the requirement that the assignment to rk

i,j contains a con-
nected, end-to-end path for each source-sink pair k. This can be expressed by requiring
every node different from the source o(k) and the sink d(k) to “preserve” the message,
i.e.:

∀i ∈ N , ∀k ∈ C,
∑

m:(i,m)∈A
rk
i,m −

∑
n:(n,i)∈A

rk
n,i =

⎧⎨
⎩

1 if i = o(k)
−1 if i = d(k)
0 otherwise

(4)

The previous expression is similar to a network flow conservation equation, and indeed
imposes the existence of a multi-hop route from each source to every sink. Figure 2
illustrates the concept in the case of a single source-sink pair. The solution in Figure 2(a)
is not acceptable, as the message originated at C and directed to A is lost at node B
and suddenly reappears at node D. Indeed, the constraint in (4) does not hold for node
B and D, as its left-hand side evaluates to -1 when i = B and to 1 for i = D, and
neither node is an origin or destination for the source-sink pair. Conversely, the solution
in Figure 2(b) is perfectly meaningful: a connected, multi-hop path from the source to
the sink exists, and indeed the constraint in (4) holds for every node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 39

With this formulation, the problem of finding the optimal assignment that satisfies
our goal can be solved straightforwardly by using well-established techniques and tools
from mathematical programming. These techniques require global knowledge of the
system state and are computationally expensive, and therefore impractical for WSNs.
For this reason, we devised a distributed scheme that relies only on local (i.e., within
the 1-hop neighborhood) knowledge, and can be implemented on resource-constrained
devices. We return to the theoretical optimal solution in Section 4, where we show how
it is efficiently approximated by the distributed solution, discussed next.

3 A Distributed Solution

As we discussed in Section 2, the goal of minimizing the number of links can be
achieved by maximizing the overlapping of the paths along which data is routed from
a given source to a given sink. In this section, we illustrate the distributed solution we
devised to achieve this goal.

We assume that the initial state of the system is such that a tree exists for each
sink, connecting it to all the relevant sources. These sink-rooted trees are easily built
using mechanisms available in the literature, e.g., along the reverse path of interest
propagation as in Directed Diffusion [6]. Clearly, these mechanisms are designed to
build each tree independent of the others, and therefore do not guarantee any property
regarding their overlapping.

To guarantee a high degree of overlapping among source-sink paths, our protocol re-
lies on a simple adaptive scheme. Each node can decide to locally manipulate a source-
sink path by changing the neighbor serving as its parent along a path towards a given
sink. The decision is based on information about the neighbor nodes, piggybacked on
application messages and overheard during transmission. This control information is
fed into a quality metric q(n, s) that yields a measure of the quality of a neighbor n
as the parent towards a sink s, and is periodically evaluated for each neighbor n and
sink s. Changing the current parent to a different neighbor n occurs when the value of
q(n, s) becomes the maximum value of q among all neighbors for sink s. In this case,
the node simply begins forwarding data to the new parent. The switch can be managed
without additional control messages by using a timeout.

In principle, the quality metric q can be designed to rely on various quantities. In this
paper, we present and evaluate an instantiation of our protocol where our quality metric
relies on:

1. dist(j, s), the distance (in hops) from a node j to a given sink s, as determined by
the initial interest propagation;

2. paths(j), the number of source-sink paths passing through a given node j, i.e.,
using the notation in Section 2:

paths(j) =
∑
k∈C

rk
i,j (i, j) ∈ A

3. sinks(j), the number of sinks a given node j currently serves.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 P. Ciciriello, L. Mottola, and G.P. Picco

Fig. 3. An abstract view of a WSN with multiple sources and multiple sinks. Source Z generates
data to be delivered to sink S, routed through node A. Besides Z, node A is a neighbor of B, C,
and D. At node A, the current parent towards S is C. However, a better choice is represented by
D, since it enjoys the highest number of overlapping paths and served sinks among A’s neighbors.

The distance between a neighbor and a sink is of fundamental importance in increasing
reliability and reducing overhead. Indeed, the higher the number of nodes traversed by
a message, the higher the probability to lose a message due to unreliable transmission,
and the higher the overall computational and communication cost paid to deliver the
message end-to-end. The rationale behind the choice of the other two quantities can be
visualized with the help of Figure 3. In the network shown, a source Z needs to send
data to the sink S, and to do so routes messages upstream through its neighbor A. Node
A, in turn, has three neighbors B, C, and D, with C being the current parent in the
tree rooted at S. Nevertheless, the figure also shows how both B and D are currently
traversed by more source-sink paths than node C. Therefore, if A were to choose either
of these neighbors as the new parent towards S, there would be more overlapping paths
passing through either B or D than in the current situation—which is exactly our goal.
Finally, the figure also shows that D is serving more sinks than node B. Therefore, with
respect to B, D is more likely1 to be already reporting readings to S, possibly on behalf
of other sources. If this is actually the case, choosing D leads to reusing an “already
open” path towards S, therefore further increasing the overlapping of source-sink paths
at no additional cost. Therefore, node D is the best choice among A’s neighbors, and A
will eventually switch to D as its parent towards the sink S.

1 As we know only the number sinks(j) of sinks served by j we cannot be sure that S is
really among them. To obviate to the problem, we could propagate the identifier of the sinks
served instead of their number. However, as shown in Section 4, the latter already yields good
performance and generates much less overhead.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 41

Field Name Description

neighborId The identifier of the neighbor relative to this entry.
dist An associative array containing, for each sink in the system, its distance from neighborId.

paths The number of different source-sink paths currently passing through neighborId.
sinks The number of sinks served through neighborId, possibly along a multi-hop path.

Fig. 4. Information used to compute the quality metric for a neighbor node

As we already mentioned, the actual decision to switch to a different parent is deter-
mined by a quality metric q, an estimate of how “beneficial” this decision would be. In
this paper, we designed q to be a linear combination of the three quantities above:

q(n, s) ::= δ · dist(n, s) + α1 · paths(n) + α2 · sinks(n) (5)

where δ, α1, α2 are tuning parameters of the protocol. Again, the shape of the function
q and its constituents can in principle be different. For instance, one could take the
node remaining energy into account and rely on our solution to automatically alternate
among different parents, therefore achieving load balancing among the possible parents
in a given tree. Although the results presented in Section 4 with the quality metric in
(5) are already very positive, investigating the impact of alternative definitions of q is in
our immediate research agenda.

To compute q(n, s) for a given neighbor n and sink s, a node must first determine the
three constituents dist(n, s), paths(n), and sinks(n). These are evaluated by relying on
a data structure maintained by each node. Figure 4 shows the data structure fields for
a single neighbor. Note how the various fields are maintained differently. The value
of the field neighborId is clearly determined locally based on information from the
lower layers, and serves as the key to index the data structure. The content of dist is
determined from the messages flooded by the sink either during the tree setup phase,
or in successive flooding operations performed to keep this information up-to-date with
respect to nodes joining or failing. The values of paths(n) and sinks(n) are instead
derived by the node through overhearing of messages sent by n. Indeed, these messages
piggyback the control information above, which can then be used to update the data
structure in Figure 4. Note how the overhead due to this additional control information
is very small: only two integer values are needed.

Figure 5 illustrates a sample adaptation
Field Name Value

neighborId G
dist {C = 2, D = 4}
paths 1
sinks 1
neighborId F
dist {C = 2, D = 4}
paths 2
sinks 2

Fig. 6. Data stored at node E in the situation
depicted in Figure 5(a)

process. For the sake of the example, we fo-
cus on node E and sink C, and we assume
δ = α1 = α2 = 1 in (5). With these pa-
rameters, node E evaluates the quality met-
ric q towards sink C for its two neighbors
F and G. Figure 6 shows the content of the
data structures in Figure 4 for F and G. The
evaluation returns q(G, C) = 2 + 1 + 1 = 4
and q(F, C) = 2 + 2 + 2 = 6. Therefore, E
recognizes F as the best next-hop towards
C, and changes its parent accordingly, as depicted in Figure 5(b). The benefit of this
change can be easily seen by computing the number of links and nodes involved: the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 P. Ciciriello, L. Mottola, and G.P. Picco

(a) Initial configuration. (b) Node E changes its parent
from G to F .

Fig. 5. A sample adaptation process

network in Figure 5(a) uses 13 network links and 12 nodes, against the 10 links and 10
nodes of Figure 5(b).

To break ties between the current parent and a new one, a node always selects the
latter, as it is guaranteed to enjoy a higher value of q after becoming a parent. Indeed, at
least the number of source-sink paths passing through it increases by one. In selecting
the new parent, the only additional constraint is to not select as a new parent a neigh-
bor whose distance from a sink is greater than that of the selecting node. Without this
constraint, a node could potentially select one of its children as the new parent, hence
creating a routing loop.

Finally, our distributed protocol is complemented by a simple scheme for packing
multiple readings in the same network message. To this end, each node maintains a
buffer for each neighbor, limited by the number of readings allowed in a message.
Upon receiving a reading from another node, the reading is inserted in the buffer for
the neighbor on the route to the target sink. When the buffer for a given neighbor is full
(or upon expiration of a timeout) a message is created and actually forwarded to the
neighbor. This simple scheme decreases the per-reading header cost and helps reducing
collisions, since buffers are likely to become full at different times and therefore mes-
sages are going to be reasonably spread in time. In principle, the same packing scheme
can be used without our adaptation protocol. However, its impact is greater in the pres-
ence of adaptation, since the latter guarantees a higher degree of overlapping among
trees, with more readings being funneled through the same links.

4 Evaluation

In this section, we report about simulation results comparing the performance of our
solution against a base mechanism without adaptation as well as the optimal solution
identified in Section 2. These solutions provide the two extremes for our evaluation:
we indeed demonstrate that our adaptation strategy provides remarkable benefits, and
that its effectiveness approaches the theoretical optimum. In our evaluation, we also

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 43

show that our solution converges rapidly, and investigate the impact of the various con-
stituents of our quality metric q, as introduced in Section 3. We are currently investigat-
ing alternative definitions of q (e.g., including the remaining node energy for achieving
load balancing, as mentioned earlier).

Simulation Settings and Metrics. We implemented our distributed scheme on top of
TinyOS [9], and evaluated its performance using the TOSSIM [10] simulator. As for the
theoretical optimum discussed in Section 2, we used the CPLEX [11] solver to compute
the ideal topology connecting sources to sinks, given their respective placement in the
system and the constraints defined in Section 2.

We first report about simulated deployments in a regular grid, where each node can
communicate with its four neighbors. This choice simplifies the interpretation of results
by removing the bias induced by random deployments, while also well modeling some
of the settings we target, e.g., indoor WSN deployments for control and monitoring [12].
To this end, the nodes are placed 35 ft. apart with a communication range2 of 50 ft.
Moreover, we also evaluated the performance of our protocol in deployments with a
random topology, characterized by a pre-specified average number of neighbors for
each node. With respect to the fixed grid above, these scenarios allow us to assess the
impact of the connectivity degree on our results, as well as evaluate our protocol in
more unstructured scenarios (e.g., modeling outdoor WSNs deployments).

As for the modeling of sources and sinks, each scenario is set so that 10% of the
nodes are data sources. These send data to a number of sinks that varies according to the
scenario, at the rate of one reading per minute. Hereafter, the time period between two
successive readings generated from the same source is termed epoch. Also, note that
sources are not synchronized in generating these readings. The placement of sources
and sinks in the network is determined randomly. A single sensor reading is represented
by a 16-bit integer value, while the message size at the MAC layer is 46 bytes. In all our
implementations, messages are always sent when there are sufficiently many readings
to fill the physical message completely. Each simulation lasted 2000 s, and was repeated
5 times.

The initial tree is built by flooding the system with a “tree construction” message
sent by every sink. Each node keeps track of the messages received from the same sink,
and stores the identifier of the neighbor along which the message was received with
the least number of traversed hops. This way, the initial tree is built by minimizing the
length of the path connecting each source to every sink. In the chart, this base tree is
also used, without any additional modification, as the point of comparison against our
solution. Indeed, it essentially provides a baseline, representative of protocols that build
independent trees (e.g., Directed Diffusion [6]), against which we show the benefits of
our adaptive scheme.

For what concerns the protocol parameters, we evaluate independently the impact
of the number of overlapping paths and the number of served sinks by simulating sce-
narios with 〈α1 = 1, α2 = 0〉 and 〈α1 = 0, α2 = 1〉. Moreover, we also evaluate the
combined contribution of these quantities using 〈α1 = 1, α2 = 1〉. As for the distance
from sinks, we discussed in Section 3 how its contribution is key in achieving a good

2 We used TinyOS’ LossyBuilder to generate topology files with transmission error proba-
bilities taken from real testbeds.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 P. Ciciriello, L. Mottola, and G.P. Picco

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120

N
et

w
or

k
O

ve
rh

ea
d

(N
um

be
r

of
 M

es
sa

ge
s)

Source-Sink Paths

Base
Overlapping paths only

Served sinks only
Paths and sinks

(a) Network overhead (forwarded messages).

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120

N
um

be
r

of
 E

xp
lo

ite
d

Li
nk

s

Source-Sink Paths

Base
Overlapping paths only

Served sinks only
Paths and sinks

Ideal solution

(b) Number of links exploited.

Fig. 7. Grid topology: performance metrics vs. number of source-sink paths

ratio of delivered readings. Differently from the two quantities above, the lower is this
value, the better (closer) is the neighbor located w.r.t. a given sink. For this reason,
we always set δ = −2 throughout all the simulation runs, so that neighbors at a few
hops from the considered sink are preferred over neighbors farther away. As we verified
experimentally, this value provides a good trade-off w.r.t. the other parameters.

The main quantities we measured are:

– the ratio of readings delivered to the sinks over those sent;
– the network overhead as the number of messages sent at the MAC layer—being

communication the most prominent source of energy drain in WSNs, this measure
can be considered as proportional to the system lifetime;

– the number of links exploited, i.e., the number of physical links used to route
messages—the fundamental metric we strive to minimize3.

Moreover, to provide further insights on the behavior of our protocol we analyzed the
number τ of trees insisting on each physical link, showing the ratio τadaptive/τbase in
different scenarios. Finally, to analyze the dynamics of our protocol we measured the
number of topological changes against the epoch number, showing the time needed for
our solution to stabilize.

Results. We first focus on a grid topology. The comparison of the charts in Figure 7
captures the essence of our approach. Figure 7(a) plots the network overhead against the
number of source-sink paths, and shows how our adaptive scheme exhibits only about
50% the overhead of the base solution, on the average. On the other hand, Figure 7(b)
shows that our distributed scheme relies on only about 50% of the links used by the base
solution. Remarkably, the number of network links exploited in Figure 7(b) exhibits the
same trend of the overhead in Figure 7(a), therefore evidencing that the gains in network
overhead are made possible by the reduction in the number of links exploited. Indeed,
in our approach messages are duplicated only where it is really necessary, whereas the
base solution often duplicates messages too early, as they are routed independently.
Furthermore, Figure 7(b) shows also a curve for the theoretical optimum we computed

3 Notice we count multiple links also when different sinks can be reached with a single broadcast
message at the physical level.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 45

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 100 150 200 250 300

N
et

w
or

k
O

ve
rh

ea
d

(N
um

be
r

of
 M

es
sa

ge
s)

Nodes

Base
Overlapping paths only

Served sinks only
Paths and sinks

(a) Network overhead (forwarded messages).

 50

 100

 150

 200

 250

 300

 350

 100 150 200 250 300

N
um

be
r

of
 E

xp
lo

ite
d

Li
nk

s

Nodes

Base
Overlapping paths only

Served sinks only
Paths and sinks

Ideal solution

(b) Number of links exploited.

Fig. 8. Grid topology: performance metrics vs. number of nodes (4 sinks)

in Section 2. Remarkably, our solution always achieves a performance very close to the
optimum—at most 10% in the worst case—but without requiring global knowledge.
Note how these significant improvements in overhead are obtained without impacting
message delivery: actually, the ratio of delivered readings improves of about 10% in our
adaptive scheme4.

Figure 7 also evidences that considering only the number of served sinks in our qual-
ity metric q yields the worst results in the adaptive solution—although still significantly
better than the base scheme. The combination of the two metrics provides the best re-
sults in scenarios with a high number of source-sink paths, exhibiting a gain around
10% w.r.t. the number of overlapping paths alone. Conversely, little or no improvement
is obtained by 〈α1 = 1, α2 = 1〉 in settings with less sources and sinks. A closer look
at our simulation logs revealed that in these scenarios the combination of overlapping
paths and served sinks simply amplifies the differences in the value of q for differ-
ent neighbors, only seldom changing the decision on the parent to be selected. This
is partially expected, as in the aforementioned settings more overlapping paths easily
correspond to more served sinks and vice versa.

Thus far, we analyzed the performance of our protocol only w.r.t. the number of
source-sink paths. Indeed, we noted the performance of our approach is affected more
directly by this parameter than by the number of nodes in the system. For instance, we
obtained comparable performance in a scenario with 81 nodes (8 sources) and 4 sinks,
w.r.t. a setting with 121 nodes (12 sources) and 3 sinks. The settings shown thus far were
obtained with different system sizes, starting from 2 sinks in a system of 81 nodes, up
to 4 sinks among 289 nodes. Nevertheless, to investigate the scalability properties of
our solution, Figure 8 illustrates the same trends discussed above, this time against the
number of nodes in the system in a scenario with 4 sinks. The adaptive scheme scales
fairly well w.r.t. system size and, again, much better than the base solution with no
adaptation, and very close to the theoretical optimum. Moreover, once more the trend
of network overhead (Figure 8(a)) is mirrored by the one for the number of exploited
links (Figure 8(b)).

A finer-grained analysis is shown Figure 9, where we show the ratio τadaptive/τbase

of overlapping trees per physical link using 〈α1 = 1, α2 = 1〉. As expected, based on

4 Due to space limitations we do not show the corresponding charts here.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 P. Ciciriello, L. Mottola, and G.P. Picco

 0

 2

 4

 6

 8

 100 150 200 250 300

O
ve

rla
pp

in
g

R
at

io

Nodes

Base
2 trees overlapping
3 trees overlapping
4 trees overlapping

Fig. 9. Ratio of overlapping source-sink paths
per physical link vs. number of nodes

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

N
um

be
r

of
 tr

ee
 m

ut
at

io
ns

Epochs

81 Nodes
121 Nodes
225 Nodes
289 Nodes

Fig. 11. Convergence time, in a system with 4
sinks

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 3 4 5 6 7 8 9 10

N
et

w
or

k
O

ve
rh

ea
d

(N
um

be
r

of
 M

es
sa

ge
s)

Average Number of Neighbors

Base
Overlapping paths only

Served sinks only
Paths and sinks

(a) Network overhead (forwarded messages).

 20

 40

 60

 80

 100

 120

 3 4 5 6 7 8 9 10

N
um

be
r

of
 E

xp
lo

ite
d

Li
nk

s

Average Number of Neighbors

Base
Overlapping paths only

Served sinks only
Paths and sinks

Ideal solution

(b) Number of links exploited.

Fig. 10. Random topology: performance metrics vs. average number of neighbors per node

the previous considerations about network overhead and number of exploited links, our
adaptive scheme sensibly increments the number of source-sink paths overlapping on
the same link. For instance, in a scenario with 121 nodes, the number of links shared
among 4 trees is about 8 times the one for the base scheme. However, as the number
of nodes increases with a fixed number of sinks, this ratio decreases since the different
source-sink paths may become too far from each other to be merged effectively.

The impact of connectivity is considered in Figure 10, with a random deployment of
the nodes. The charts show the network overhead and number of used links against the
average number of neighbors per node in a system with 150 nodes, 4 of which are sinks.
The trends are more irregular in this case, because of the bias introduced by the random
topology. However, Figure 10(a) shows that our solution always outperforms the base
scheme, achieving improvements from 40% to 60% in network overhead. As for the
number of physical links exploited, shown in Figure 10(b), it is interesting to notice that,
as connectivity increases, the gap between our solution and the theoretical optimum is
reduced. Indeed, the more the system is globally connected, the more information the
nodes collect by overhearing messages, and the more options they enjoy when selecting
a parent for a given tree. Our distributed scheme should converge to the optimal solution
as the system becomes more and more connected. Incidentally, the trend in Figure 10(b)
also highlights how our previous choice of 4 neighbors per node in the grid topology
was fairly conservative.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 47

Finally, as our solution is based on successive rounds of adaptation, we also analyzed
the time needed to converge to a stable configuration. Figure 11 shows the number of
topological changes against the epoch number. Results are obtained in network of var-
ious sizes with 4 sinks. The chart shows that the higher is the number of nodes in the
system, the higher is the number of topological changes and the time needed to con-
verge. However, in the worst case 10 epochs are sufficient to reach a stable configura-
tion, with most of the changes concentrated in the first few epochs. Therefore, in stable
deployment scenarios there is no need to run continuously the adaptation process, which
instead can be triggered with a large period or only upon detecting topology changes.

5 Related Work

The model we presented in Section 2 is derived from the large body of literature in
operational research and network design. Our choice of the multi-commodity network
design problem as a modeling framework is motivated by the generality it allows in
pairing sources and sinks. In contrast, modeling the same problem as a p-source min-
imum routing cost spanning tree [13] or a Steiner minimal tree [14] would force us to
consider every node (or source, respectively) to be a sink as well. At the same time, the
model we presented here is a simple instance of the multi-commodity network design
problem. More sophisticated formulations exist, e.g., taking into account the capacity
of network links [15]. In this case, when the capacities along a path are exhausted, alter-
native, parallel paths are used to share the traffic load, therefore activating more links.
However, in WSNs it is difficult to evaluate precisely the actual bandwidth available,
due to contention of the wireless medium, collisions and unreliable transmissions [16].
Moreover, these issues are amplified as the number of links used to route messages in-
crease. Therefore, we believe these formulations are not suited for the wireless setting.

For what concerns distributed solutions, it is safe to say that most research work in
sensor network focuses on optimizing communication from multiple sources to a single
sink, as witnessed by the vast amount of literature on the subject [17]. As we already
mentioned, these approaches cannot provide efficient solutions to more decentralized
scenarios like sensor and actuator networks [2], which inherently call for routing solu-
tions to report to multiple receivers.

In [18] the authors propose mechanisms to build sink-rooted trees incrementally, to
perform data aggregation and in-network processing. A path from a single source to the
sink is first built, and then shared by other, nearby sources. In this sense, their approach
resembles our rational of minimizing the number of network links exploited to reduce
the network traffic. However, their solution is geared to single-sink scenarios, and the
results barely comparable to ours, as they are obtained in simulation using a MAC layer
derived from IEEE 802.11. Devising mechanisms to combine the two techniques could
provide further benefits, and is a topic worth further investigation.

The work in [19] addresses the problem of routing from a single source to multi-
ple sinks. Common to our approach is the use of broadcast transmissions to let nodes
collect information on alternative routes. However, the adaptation in [19] is performed
based on long-range information (e.g., the number of hops from a node to the different
sinks). As this information may not be immediately available, the algorithm starts with a
worst case estimation and randomly tries different routes, including those deemed less

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 P. Ciciriello, L. Mottola, and G.P. Picco

favorable. When the information gathered during this exploration phase is not modi-
fied for a given number of iterations, the algorithm switches to a stable phase where
the discovered routes are used. The adaptation mechanism we proposed in this work is
instead based mainly on local information that is immediately available (e.g., the num-
ber of source-sink paths passing through a node), Moreover, our algorithm is basically
self-stabilizing, and does not require distinct phases of operation.

Some researchers addressed the problem of routing from multiple sensors to mobile
sinks, focusing on mechanisms to deal with frequent location updates. To this end,
in [20] a two-level grid structure is proactively built by the sources. This identifies a
reduced subset of nodes responsible for storing information about the sink position, and
to which location updates are sent. Conversely, in [21] a stationary sensor node builds
a tree on behalf of one or more mobile sinks. These remain linked to this node until
they move too far away, at which point they are forced to select a different stationary
node. In-network data processing in the presence of mobile sinks is also considered
in [22], where a tree is built by a master sink and then shared by slave sinks. Local
repair strategies are employed to adjust the tree according to sink mobility. Differently
from our approach, in these works sink mobility is the distinctive feature of the target
scenario, and the proposed solutions are aimed at reducing the overhead induced by
it. In contrast, we concentrate on optimizing the source-sink paths, as this is key to
improve the system lifetime in our target scenarios, actually less dynamic. In doing
so we make only minimal assumptions about the node capabilities (i.e., the ability to
overhear messages sent by neighbors), while all the aforementioned proposals require
nodes to be aware of their geographical position, exploited for routing.

Instead, the work in [23] introduces an algorithm targeting monitoring applications
for achieving energy-efficient routing to multiple sinks. The optimizations proposed are
centered around the ability to adjust the sensing rate at different nodes, eliminating the
redundancy in the data gathered while preserving the ability to reconstruct the corre-
sponding phenomenon. Instead, we do not assume the ability to influence the source
behaviors. Conversely, common to our approach is the problem formulation based on
integer linear programming. The authors then map this formulation to a distributed
search algorithm based on subgradient optimization, executed in a decentralized fash-
ion. However, they do not provide any insights on the processing overhead this solution
would impose on real, resource constrained nodes. We use instead the model presented
in Section 2 as a theoretical bound for careful analysis of a lightweight, distributed
solution straightforwardly implementable on WSN devices.

Finally, other works have focused on the opportunity to employ multiple sinks not to
meet an application requirement, but as a mechanism to increase the system lifetime.
For instance, the work in [24] investigates the design problem related to optimally locat-
ing multiple sinks in the sensor field, so as to achieve a pre-specified operational time.
In this case, even if multiple sinks are present, these simply act as cluster-heads, with
each sensor node reporting to only one of them. Similarly, the proposal in [25] studies
the problem of selecting, at each node, one of the many sinks present in the system
to minimize the overall energy expenditures. Clearly, this is a different problem w.r.t.
ours, where the multiple sinks actually represent different system actors, that need to
simultaneously gather sensor data for potentially different tasks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Routing from Multiple Sources to Multiple Sinks in WSNs 49

6 Conclusions and Future Work

This paper addressed the problem of efficiently routing data from multiple sources to
multiple sinks. We defined a model based on mathematical programming that, albeit
relying on global knowledge, can be easily used to derive an optimal solution. Then,
we illustrated a novel decentralized scheme that adapts the topology by maximizing
the overlapping among source-sink paths, therefore minimizing the overall number of
network links exploited. This results in reduced overhead, increases the system life-
time, and makes communication more reliable. The approach is simple enough to be
implemented on resource-scarce WSN devices, and we showed that achieves a 50%
improvement in network overhead. Additionally, we illustrated how the quality of the
routes obtained is close to the theoretical lower bound.

Our immediate research agenda includes an assessment of the impact of our adaptive
strategy on the processing load at each node, and the design of techniques for balancing
such load using alternative definitions of the quality metric we introduced in this paper.
A formal proof of the convergence properties of our distributed scheme is also among
our future research goals.

Acknowledgements. The authors wish to thank Roberto Cordone and Marco Trubian
for their insightful suggestions on modeling the multiple sources to multiple sinks rout-
ing problem, and Kay Römer for providing suggestions and comments on early versions
of this paper. The work described here is partially supported by the European Union un-
der the IST-004536 RUNES project.

References

1. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: Proc. of the 1st ACM Int. Workshop on Wireless sensor
networks and applications. (2002) 88–97

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research challenges.
Ad Hoc Networks Journal 2(4) (2004) 351–367

3. Roemer, K.: Distributed mining of spatio-temporal event patterns in sensor networks. In:
Proc. of the 1st Euro-American Wkshp. on Middleware for Sensor Networks (EAWMS).
(2006)

4. Bakshi, A., Prasanna, V.K., Reich, J., Larner, D.: The abstract task graph: a methodology
for architecture-independent programming of networked sensor systems. In: Proc. of the
2005 Wkshp. on End-to-end, sense-and-respond systems, applications and services (EESR),
Berkeley, CA, USA, USENIX Association (2005) 19–24

5. Ciciriello, P., Mottola, L., Picco, G.P.: Building Virtual Sensors and Actuator over Logical
Neighborhoods. In: Proc. of the 1st ACM Int. Wkshp. on Middleware for Sensor Networks
(MidSens06 - colocated with ACM/USENIX Middleware). (2006)

6. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion
for wireless sensor networking. IEEE/ACM Trans. Networking 11(1) (2003) 2–16

7. Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems. Chapman & Hall (2004)
8. Holmberg, K., Hellstrand, J.: Solving the uncapacitated network design problem by a la-

grangean heuristic and branch-and-bound. Oper. Res. 46(2) (1998) 247–259
9. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-

tions for networked sensors. In: ASPLOS-IX: Proc. of the 9nt Int. Conf. on Architectural
Support for Programming Languages and Operating Systems. (2000) 93–104

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 P. Ciciriello, L. Mottola, and G.P. Picco

10. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simulation of
entire TinyOS applications. In: Proc. of the 5th Symp. on Operating Systems Design and
Implementation (OSDI). (2002) 131–146

11. I-Log: CPLEX Home Page. (www.ilog.com/products/cplex/)
12. Stoleru, R., J.A. Stankovic: Probability grid: A location estimation scheme for wireless

sensor networks. In: Proc. of the 1st Int. Conf. on Sensor and Ad-Hoc Communication and
Networks (SECON). (2004)

13. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial-time
approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29(3)
(2000) 761–778

14. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland (1992)
15. Gendron, B., Crainic, T.G., Frangioni, A.: Multicommodity capacitated network design.

Telecommunications Network Planning (1998) 1–19
16. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5) (2000)

51–58
17. Al-Karaki, J., Kamal, A.E.: Routing techiniques in wireless sensor networks: a survey. (To

appear in IEEE Wireless Communications)
18. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J.: Impact of network density on

data aggregation in wireless sensor networks. In: Proc. of the 22th Int. Conf. on Distributed
Computing Systems (ICDCS), Washington, DC, USA, IEEE Computer Society (2002) 457

19. Egorova-Förster, A., Murphy, A.L.: A Feedback Enhanced Learning Approach for Routing
in WSN. Technical report, University of Lugano (2006) Available at
www.inf.unisi.ch/phd/foerster/publications/foerster06.pdf.

20. Luo, H., Ye, F., Cheng, J., Lu, S., Zhang, L.: Ttdd: Two-tier data dissemination in large-scale
wireless sensor networks. Wireless Networks (11) (2005) 161–175

21. Kim, H.S., Abdelzaher, T.F., Kwon, W.H.: Minimum-energy asynchronous dissemination
to mobile sinks in wireless sensor networks. In: Proc. of the 1st Int. Conf. on Embedded
networked sensor systems (SENSYS). (2003) 193–204

22. Hwang, K., In, J., Eom, D.: Distributed dynamic shared tree for minimum energy data ag-
gregation of multiple mobile sinks in wireless sensor networks. In: Proc. of 3rd European
Wkshp. on Wireless Sensor Networks (EWSN). (2006)

23. Yuen, K., Li, B., Liang, B.: Distributed data gathering in multi-sink sensor networks with
correlated sources. In: Proc. of 5th Int. IFIP-TC6 Networking Conf. (2006) 868–879

24. Oyman, E.I., Ersoy, C.: Multiple sink network design problem in large scale wireless sensor
networks. In: Proc. of 1st Int. Conf. on Communications (ICC). (2004)

25. Das, A., Dutta, D.: Data acquisition in multiple-sink sensor networks. Mobile Computing
and Communications Review 9(3) (2005) 82–85

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

www.ilog.com/products/cplex/
www.inf.unisi.ch/phd/foerster/publications/foerster06.pdf

inTrack: High Precision Tracking of Mobile
Sensor Nodes

Branislav Kusý1, György Balogh1, János Sallai1, Ákos Lédeczi1,
and Miklós Maróti2

1 Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

akos.ledeczi@vanderbilt.edu
http://www.isis.vanderbilt.edu

2 Department of Mathematics,
University of Szeged, Hungary

mmaroti@gmail.com

Abstract. Radio-interferometric ranging is a novel technique that al-
lows for fine-grained node localization in networks of inexpensive COTS
nodes. In this paper, we show that the approach can also be applied
to precision tracking of mobile sensor nodes. We introduce inTrack, a
cooperative tracking system based on radio-interferometry that features
high accuracy, long range and low-power operation. The system utilizes
a set of nodes placed at known locations to track a mobile sensor. We
analyze how target speed and measurement errors affect the accuracy of
the computed locations. To demonstrate the feasibility of our approach,
we describe our prototype implementation using Berkeley motes. We
evaluate the system using data from both simulations and field tests.

1 Introduction

Node localization is an important service for sensor network applications because
in order to correlate the observations of a physical phenomenon made by differ-
ent sensor nodes, their precise locations need to be known. When some of the
sensors are mobile, they need to be tracked continuously. Alternatively, one can
envision applications where the whole purpose of the sensor network is to track
some objects, for instance, vehicles, people or animals, and a node is mounted
on each object for this purpose. The location data may be used locally for nav-
igation, for example, but it is typically transmitted to a remote computer and
used, for instance, to display the position of the object on a map in real-time.
GPS navigation systems and tracking services are examples of such applications
outside of the sensor network realm. However, when low-cost, low-power and/or
high precision are required and the area of interest is relatively constrained in
size, a wireless sensor network can provide an ideal platform.

In this work, we concentrate on cooperative tracking, in which the tracked
object works together with the tracking system to determine its location. We
envision a fixed set of resource constrained wireless devices deployed at known

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 51–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.isis.vanderbilt.edu

52 B. Kusý et al.

locations forming the infrastructure of the tracking service. Their function is the
same as that of the GPS satellites: they act as RF sources for the purpose of
locating objects relative to their known positions.

Low-power, low-cost devices typically offer only limited computational power,
memory and radio range. Despite these limitations, it has been shown that it is
possible to measure highly accurate ranges over large distances [1]. The radio-
interferometric positioning system presented in [1] was further improved in [2]
to achieve a demonstrated localization error of less than 10 cm at a remarkably
low node density of 650 nodes/km2.

Previous work on radio-interferometric positioning in sensor networks focused
exclusively on networks with stationary nodes. The single limiting factor making
tracking a more challenging problem than node localization is the non-zero time
required to measure the ranges, constraining both the real-time availability of the
location estimates and the maximum allowable speed of the tracked object. On
one hand, localization accuracy depends on the amount of ranging data available.
Increasing the number of ranging measurements, however, limits the refresh rate.
On the other hand, if the speed of the tracked object is high, the range changes
significantly during the measurement and inconsistent ranging data is obtained.
Radio-interferometric ranging is especially prone to these errors, because a single
range measurement takes anywhere between 100 ms and 1 sec, depending on the
required ranging accuracy and also on the capabilities of the hardware platform.

The objectives for a practical and effective tracking system are:

Accuracy: location errors are less than a meter error on average.
Large scale: the node density is less than 1000 nodes/km2.
Real-time tracking: refresh rate and latency are adequate for tracking a walk-

ing person.
Resilience to multipath: the approach should work in moderate multipath

environments, meaning outdoor deployments with buildings, cars, trees and
people close by.

Low-power, low-cost: the range measurements can be collected using stan-
dard sensor network devices with resource constraints such as 8 MHz micro-
controller, 9 kHz ADC sampling, 4 kB of RAM memory, 56 kbps radio and
no additional specialized hardware.

In this paper, we show how to improve the time effectiveness of radio-
interferometric ranging to allow for real-time refresh rates with sufficient rang-
ing accuracy. First, frequent calibration of radio hardware is required to achieve
the desired beat frequency, because manufacturing differences coupled with en-
vironmental effects may cause up to 50 ppm errors in the emitted frequency. We
show that it is possible to completely eliminate time consuming recalibration by
measuring the frequency of the interference signal and adjusting the radio set-
tings on-the-fly. As a result, the improved algorithm carries out the calibration
in parallel with ranging. Second, we observe that certain types of measurement
errors cannot be eliminated at the ranging level and propose a novel technique
that outputs a set of possible ranges, the true range being one of them with
high probability. In turn, our tracking algorithm uses the fact that the true

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 53

ranges from different nodes correlate and it is able to reject the erroneous mea-
surements. We implement this algorithm on a centralized node (a PC laptop)
where all ranging measurements from the individual sensors are routed. We show
that this process is superior to the previously described localization algorithm,
improving the time required to compute the location by an order of magnitude.

2 Radio-Interferometric Ranging

Our tracking algorithm builds on the radio-interferometric ranging technique
introduced in [1] which was shown to provide accurate ranges over large dis-
tances using low-cost COTS hardware. The unique feature of this work is that
two transmitters A and B transmit unmodulated high frequency sine waves at
slightly different frequencies concurrently. The resulting composite interference
signal has a low beat frequency and can be analyzed on resource-limited hard-
ware using the received signal strength indicator (RSSI) signal. The phase of the
composite signal, when measured at receiver C, depends on the phase difference
of the two transmitters and their distances from C. Typical low-cost hardware
does not allow for phase control at the transmitters, therefore, one more receiver
D is used to analyze the same composite signal. The relative phase offset of
C and D depends only on the distances between the four nodes and can be
expressed as follows (see [1] for the formal proof):

dABCD mod λ = ϕCD
λ

2π
, (1)

where λ is the wavelength corresponding to the carrier frequency, ϕCD is the
relative phase offset of C, D, and dABCD is the interferometric range (q-range)
given by the equation dABCD = dAD+dBC−dAC−dBD, dXY being the Euclidean
distance between X and Y .

Therefore, radio-interferometric ranging measures q-ranges, rather than pair-
wise ranges. Furthermore, the wavelength λ is typically much smaller than the
actual distances between the nodes, so Eq. (1) can have many solutions. This
ambiguity of the q-range solution can be resolved by measuring phase differ-
ences ϕCDi at multiple frequencies with wavelengths λi, resulting in a system of
Diophantine equations with unknowns dABCD and ni ∈ IN:

dABCD = ϕCDi

λ

2π
+ niλi (i = 1, . . . , m) . (2)

The q-ranging algorithm proposed in [1] first instruments two nodes to trans-
mit at multiple radio channels, collects the phase readings from the receivers and
then solves (2) for each pair of receivers. The prototype implementation achieved
an average localization error of 4 cm for 16 stationary Mica2 nodes covering a
120 × 120 m area.

2.1 Radio-Interferometric Ranging and Tracking

In tracking, we can assume that we only measure q-ranges dABCD for which
we know locations of three out of the four nodes. The q-range equation then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 B. Kusý et al.

reduces to the equation defining a hyperboloid in 3D space with the tracked
node being located on the surface of the hyperboloid. If the target node is one of
the transmitters, for example A, then both distances dBD and dBC are known
and the q-range defines the following hyperboloid with foci C and D:

dAD − dAC = dBD − dBC − dABCD . (3)

Similarly, if the target is one of the receivers, for example C, the q-range defines
the following hyperboloid with foci A and B:

dBC − dAC = dBD − dAD − dABCD . (4)

For a set of n nodes, a single measurement round (i.e. two nodes are trans-
mitting and the remaining n − 2 nodes are measuring the phase) yields

(
n−2

2

)
pairwise phase differences, and thus

(
n−2

2

)
q-ranges.

It is easy to see that if the tracked node is one of the transmitters, its location
can be found at an intersection of

(
n−2

2

)
hyperboloids defined by these q-ranges.

Moreover, the receivers (that is, the foci of the hyperboloid) are presumably
located at different points in space, so each pair of receivers defines a unique
hyperboloid (see Eq. (3)).

In contrast, if the tracked node is a receiver C, only n − 3 of these q-ranges
are relevant for its localization–those defined by the receiver pairs in which C
participates. More significantly, each of the hyperboloids corresponding to the
n − 3 q-ranges is uniquely defined by the two fixed foci, transmitters A and
B, and the target C. Therefore, all n − 3 q-ranges define a single hyperboloid.
In order to obtain a unique solution for C, multiple measurement rounds with
different transmitter pairs are thus required.

We choose the tracked node to be a transmitter because it provides better
ranging data per ranging measurement. A drawback of this approach relates to
its extension to multiple tracked targets. Such extension would require serialized
access to the radio channel by the targets which would decrease the refresh rate
proportionally to the number of targets.

3 Approach

The overall approach of inTrack, as shown in Fig. 1, is as follows.

1. The target requests the location calculation on demand. The second trans-
mitter is chosen from the infrastructure nodes and all nodes involved in the
measurement time-synchronize using the estimated time on arrival (ETA)
primitive [19] to coordinate their transmissions and receptions.

2. For each radio channel, receivers measure frequency and phase of the periodic
interference signal by analyzing the signal at the RSSI pin of the radio chip.
Each receiver then routes all measured data to a PC-class server. After the
routing task is completed, the target requests another localization round.

3. For each pair of receivers, the phase differences are computed for all channels.
Consequently, the q-ranging algorithm is executed on the server to calculate
q-range for each receiver pair.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 55

4. The location of the tracked node is computed. This algorithm is executed on
the server and makes the computed location available remotely on the web.

5. Both Google Earth (see Fig. 7) and our proprietary GUI show the location
and the track of the target node on the map in real-time.

ro
u
ti
n
g

COMPUTATION COMMUNICATION

Each receiver:

MEASURE PHASE AND

FREQUENCY OF

INTERFERENCE SIGNAL

MOTE

For a quad of nodes:

COMPUTE Q-RANGES

FROM PHASE OFFSETS

PC

COMPUTE LOCATION OF

THE TRACKED NODE

PC

Target node initiates

measurement
Msg broadcast

Each receiver sends the

measured phase to the

base station

TIME

DISPLAY THE LOCATION

ON THE MAP

PC

T
C
P
/I
P

R
e
fr
e
s
h
 r
a
te

A
d
d
it
io
n
a
l
d
e
la
y

Location is available

remotely through

internet

1
 s
e
c

1
.5
 s
e
c

0
.2
 s
e
c

1
-2
 s
e
c

Fig. 1. A block diagram of the tracking algorithm illustrating the timing, computation
and communication components of the algorithm. The time requirements consist of the
refresh rate portion (2.5 sec) which is the time needed to measure and route ranging
data from the nodes to the base station, and the additional delay (2 sec) needed for
the location computation. Only the phase measurement is currently implemented on
the nodes, all other computation is done on a PC.

3.1 Frequency and Phase Analysis

Probably the most time consuming operation in the process of acquiring the
frequency and phase of the interference signal is frequent calibration (see [1]).
This is required because the frequency at which the transceivers transmit is de-
pendent on the hardware differences and the temperature and voltage variations
observed in a real-world deployment of the sensors. The time required for the
calibration is unacceptably long and would decrease the refresh rate of tracking.
We have enhanced our approach eliminating the re-calibration completely and
hence, significantly decreasing the measurement time.

VCO and PLL Self-Calibration. To compensate for changes in supply volt-
age and temperature, the VCO and PLL of the radio transceiver (CC1000
from Texas Instruments, formerly Chipcon) [17]) need to be calibrated. This

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 B. Kusý et al.

self-calibration takes 34ms for the transceiver to complete, and has to be re-
peated every time when a new operating frequency is set.

We found that the calibrated settings for the VCO and PLL do not change
significantly for a few hours of continuous operation. Therefore, we self-calibrate
the radio chip for all radio channels at start-up, store the calibration values in
local memory, and use the recorded values to rapidly set up the radio for conse-
quent radio-interferometric measurements at different frequencies. The price we
pay is a) larger initialization time of the node (up to two seconds) and b) a ded-
icated memory buffer at each node to hold calibration values (up to a hundred
bytes to cover the frequency band from 400MHz to 460MHz). This is, however,
well worth the achieved 50 % improvement of the channel measurement time.

Beat Frequency Calibration (tuning). The algorithm that calculates the
phase and the frequency of the interference signal (see [1]) can only analyze
signals with frequencies in a relatively narrow range (i.e. 250–450 Hz), due to
the resource limitations on the motes. Therefore, it is essential that we can set the
frequency difference of the two transmitters with a very fine grained resolution.

However, the errors of up to 50 ppm in the transmit frequency can be expected
when using low-cost hardware, which results in an interference frequency out of
the analyzable range. Previously, we have proposed a tuning algorithm [1] that is
executed before every ranging measurement to compensate for these deviations.
As the tuning procedure for a given pair of transmitters takes approximately 3
seconds to finish, this conflicts with the real-time requirements of our tracking
service.

Since the output frequency of the radio transceiver is highly sensitive to con-
ditions such as supply voltage and temperature, it is not sufficient to execute the
tuning algorithm at application startup only. Instead of time consuming peri-
odic tunings we inserted the following control loop in our algorithm: we monitor
the beat frequencies measured by the receivers during q-range measurements
and optionally update the tuning values of the transmitters. If the observed
frequency is too low (< 300 Hz) or too high (> 400 Hz), the receivers notify
the transmitters to update their tuning values accordingly. Consequently, the
transmitters are being constantly adjusted and there is no need for the tuning
procedure (provided the q-range measurement is initiated frequently enough).
The tracking algorithm calculates a new location every few seconds assuring the
constant flow of q-range measurements as well as the constant update of the
transmit frequencies.

3.2 q-Range Computation

The algorithm published in [1] solves the system of Diophantine equations (2) in
the following way: it defines a phase offset discrepancy function f for a q-range
q as the root mean square error (RMSE) of the measured phase offsets ϕCDi

from their expected value at q:

f(q) =
√∑

i

(ϕCDi − mod(q, λi))2 .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 57

a) benign environment

0

0.05

0.1

0.15

0.2

0.25

0.3

-80 -60 -40 -20 0 20 40 60 80

Q-range (m)

D
is

cr
ep

. f
u

n
ct

io
n

-24 -22 -20 -18 -16 -14 -12
magnified

b) multipath environment

0

0.05

0.1

0.15

0.2

0.25

0.3

-80 -60 -40 -20 0 20 40 60 80

Q-range (m)

D
is

cr
ep

. f
u

n
ct

io
n

true range

multipath peaks

Fig. 2. a) The global minimum of the discrepancy function f is at the true range.
The magnified interval shows that the values of f are close to the global minimum at
certain points around the true range (multiples of λ = 70 cm). b) Multipath introduces
additional phase measurement errors, resulting in multiple local minima with almost
the same value. Global minimum may no longer be at the true range.

q-range dABCD is then defined as the point where f has the global minimum
(see Fig. 2a). It has been observed in [2] that the phase measurement errors
and the relatively small bandwidth the radio circuitry allows (difference be-
tween the maximum and minimum wavelengths is 10 cm) have negative effects
on the error distribution of the calculated q-ranges. In particular, the value of
the function f is close to the global minimum at small integer multiples of the
average wavelength λ from dABCD (see magnification in Fig. 2a). Therefore, the
distribution of q-ranging errors is not Gaussian, but it exhibits increased error
probabilities at small integer multiples of λ from the mean. The q-ranging error
is further influenced by multipath as shown in Fig. 2b. Even though the dis-
crepancy function has a local minimum at the true q-range dABCD, the global
minimum of f can be located far away.

In this paper, we aim to eliminate both the wavelength and multipath related
portions of the ranging error (shown in Fig. 2). Since the global minimum of the
discrepancy function might be a false solution and hence the true solution might
be at a local minimum, we define the output of our ranging algorithm as a set
of possible q-ranges rather than a single value. The task of choosing the correct
q-range from this set is left to the tracking algorithm. Formally, we define the
q-set SABCD as:

SABCD = {q ∈ IR, ∀i : |q mod λi − ϕCDi | < windowSize}, (5)

where A, B are transmitters, C, D are receivers, ϕCDi is the relative phase
offset of C, D measured at channel with wavelength λi, for i = 1, . . . ,m and
windowSize specifies how much discrepancy in the phase offset measurements
is tolerated.

We would like to point out that if the tracked object is moving during a mea-
surement round, q is not constant in Eq. (5). If the speed of the tracked object

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 B. Kusý et al.

is large, or the measurement takes too long (large m), the observed variance of
q becomes larger than windowSize, resulting in SABCD = ∅. One could argue
that this could be resolved by setting windowSize large enough. However, in-
creasing the window size above λ/2 would mean that every range q would satisfy
the constraints of Eq. (5). Therefore, we needed to constrain the window size
and consequently, the maximum speed of the tracked object as well.

The tradeoff between accuracy and real-time requirements also needs to be
considered: using more phase offset measurements to constrain the q-range set
(larger m) results in smaller q-set SABCD which requires less computation in the
subsequent location calculation and allows for more accurate location estimation.
Using less phase measurements, on the other hand, decreases the measurement
time resulting in better refresh rate and higher maximum speed.

The choice of parameters windowSize and m is therefore influenced by the
objectives of the tracking algorithm. We wanted to track targets of up to 2 m/s
with 2–3 sec update rate with a reasonable accuracy. Our measurements (see
Fig. 3) have shown that good accuracy can be achieved using m = 11 channels.
On the other hand, to keep the size of the calculated q-sets reasonably small,
we had to limit windowSize to 25 cm. These two parameters are in sharp con-
trast: since the measurement time is 40 ms for a single channel, the q-range can
change by almost 1 m during the 11-channel measurement for a target moving
2 m/s. This is significantly more than the allowed windowSize limit and so
the calculated q-set will be empty. We solved this problem by calculating q-sets
using small subsets of consecutively measured channels, called frames, instead
of using the full set of eleven channels. The small number of channels in a frame
allows to compute q-ranges for a moving target, and multiple frames together
can utilize information measured at all 11 channels, allowing for high accuracy.
In practice, we used 4 frames that utilized each of the 11 measured channels. The
q-ranges, calculated for different frames, can still differ by up to 1 m because
of the moving target. However, the localization algorithm can resolve this by
considering larger regions as will be shown in the next section.

3.3 Tracking

Ranging algorithms often have to deal with multiple sources of error that dis-
tort the measurements. It is usually possible to study these error sources and
calculate more information than just a range from the measured data. This extra
information can help to improve the location estimates calculated from a large
set of ranging data.

The study of the errors involved in the radio-interferometric ranging enables
us to determine q-sets from the measured data. Q-sets are relatively small sets
of q-range candidates, the true range being one of them with a high probability.
We have shown in Sect. 2.1 that each q-range corresponds to a hyperboloid in
3D and that a single ranging measurement results in multiple q-sets (one for
each receiver pair). Our localization algorithm then uses the fact that there is
at least one hyperboloid in each of the q-sets that intersects the location of the
target. In contrast, it is very improbable that a significant number incorrect

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 59

0

10

20

30

40

50

3 5 7 9 11 13 15 17 19 21

Number of channels

Q
-r

an
g

e
R

M
S

E
 (

m
)

0

0.2

0.4

0.6

0.8

1

T
im

e
(s

ec
)

ranging error

measurement time

Fig. 3. Radio-interferometric ranging measures the relative phase offsets of two re-
ceivers at multiple radio channels. The root mean square error (RMSE) of q-range
improves as the number of channels is increased, whereas the time required to measure
and transfer the data to the base station grows. The figure shows simulated data with
typical measurement noise.

hyperboloids intersect at a single point. Consequently, even though the majority
of the ranging data is incorrect, the localization algorithm can find the position
of the tracked node by finding a region where most hyperboloids intersect.

This is basically a search problem which can be solved algorithmically. Let
SD =

⋃
SABCD be the set of all q-ranges computed by the ranging algorithm

for a target node A. Let X be a box in 3D space. We define the consistency
function C(X) as the number of q-ranges from SD such that their corresponding
hyperboloids intersect box X :

C(X) =
∣∣{dABCD ∈ SD : dABCD = dXBCD for some point X ∈ X

}∣∣
The General Bisection method based on interval arithmetic [18] was shown to

find global maxima of nonlinear functions in a computationally efficient way [3].
The algorithm maintains a list of boxes along with the values of the consistency
function for each of the boxes. It is initialized with a box that corresponds to the
whole search space, the consistency value of which is the number of all q-ranges
|SD|. At subsequent steps, the algorithm removes the box with the largest value,
splits the box along the longest dimension into two equal boxes, recalculates the
consistency function of the two boxes and inserts the new boxes back to the list.
As the sizes of the boxes decrease, the consistency value is also decreasing. The
algorithm stops, if the consistency function falls under a certain threshold and
the center of the smallest box is returned as the location estimate. We allowed for
5% overlap of the boxes to reduce the risk of splitting a large box at the target
location, resulting in two smaller boxes containing half of the good data each.

The value of the consistency function for the resulting box is ideally
(
n−2

2

)
times number of frames calculated per receiver pair (which was 4 as discussed
in the previous section). In practice, we used 60% of this ideal value as the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 B. Kusý et al.

consistency function threshold. Further, we accepted the computed box as a
valid solution, only if all its sides were smaller than 2 m.

3.4 Tradeoffs

Tracking algorithms approximate continuous change of the location of the tracked
object with discrete location measurements. Therefore, the design of these algo-
rithms needs to balance the frequency of the location estimates with the amount
of collected localization data and the computational power of available hard-
ware. In other words, real-time can be traded off with the location accuracy and
the price of the system. This tradeoff is especially important in the resource
constrained domain of wireless sensor networks.

The accuracy of the radio-interferometric ranging depends on the number of
channel measurements made for a fixed pair of transmitters. Simulation results in
Fig. 3 show, that the ranging error can be significantly improved if more channels
are measured. However, it requires more time to measure more channels.

More powerful hardware allows for faster sampling, computation, and radio
transmission of the data. Therefore, more data can be measured at the same or
even shorter time improving both accuracy and refresh rate. However, more pow-
erful hardware is typically more expensive and consumes more power, increasing
the cost and decreasing lifetime of the tracking system.

Lower speed of the tracked object means more stable q-range during the mea-
surement resulting in higher accuracy. However, if the speed goes over a certain
limit, the tracking algorithm fails to return a location at all (see Sect. 3.2).

4 Results

4.1 Simulation Results

In this section, we present simulation results to evaluate the tracking algorithm.
In particular, we investigate the effects of target speed, as well as the sensitivity
of the calculated positions to measurement noise.

Parameters. The simulator generates phase and beat frequency measurements
emulating the target node moving along a trajectory being tracked by a set of
infrastructure nodes. The inputs of the simulator are the infrastructure node
locations, target speed, trajectory of the target, noise pattern, transmitter pairs,
channel frequencies and channel measurement time.

Assumptions. The trajectory of the target is defined by a sequence of way-
points, the simulated trajectory between waypoints is a line. The target speed is
assumed to be constant. These assumptions allow for easy implementation and
provide a sufficiently detailed model for our purposes.

The simulator assumes that a phase measurement at given radio channel is
instantaneous, that is, the phase does not change during the measurement. In
practice, measuring one channel takes about 40 ms which corresponds to 8 cm
position change at a speed of 2 m/s, hence the above assumption is justifiable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 61

a) average error of calculated locations

0

0.5

1

1.5

2

2.5

0.0% 2.5% 5.0% 7.5% 10.0%

STDEV of phase error (% of wavelength)

er
ro

r
(m

)

v=0.5m/s
v=1m/s
v=1.5m/s
v=2m/s

b) success rate

0%

20%

40%

60%

80%

100%

0.0% 2.5% 5.0% 7.5% 10.0%
STDEV of phase error (% of wavelength)

%

v=0.5m/s
v=1m/s
v=1.5m/s
v=2m/s

Fig. 4. Target locations are calculated for randomly generated set of 250 target posi-
tions and velocity vectors for each pair of speed and phase error deviation. a) shows
the average error of the calculated locations and b) shows the percentage of simulated
target locations where the tracking algorithm returned a location.

For simplicity, the simulator uses a Gaussian noise model. The noise is added
to the generated phase measurement data, is assumed to have zero mean and
its variance is a parameter. Our experimental observations show that these are
reasonable assumptions.

In practice, message loss and communication delays do influence the results
computed by the tracking algorithm. Evaluating the effects of data loss is beyond
the scope of this paper, so we assume no data loss in the simulation.

Approach. To generate simulated phase measurements, we use Eq. (1), a for-
mula that relates a distance aggregate for a quad of nodes and the difference
of phases measured at two receivers. We evaluate Eq. (1), where A is the in-
stantaneous position of the target at the time of the measurement, point B is
the position of the second transmitter, point C is the infrastructure node that
is measuring the phase offset and point D is a dedicated reference infrastructure
node. This way, the simulated phase measurement is a phase offset between node
C and the reference node. Since the phase values are never used directly in the
tracking algorithm, just pairwise phase differences, having the same additive con-
stant (the phase measured by the reference node D) in all phase measurements
is indifferent. Therefore, the simulated values are valid.

To calculate the target position, the tracking algorithm uses phase data mea-
sured at different frequencies, and thus at different time instances. Therefore,
there are multiple ground truth positions belonging to a calculated target posi-
tion. In order to relate the output of the tracking algorithm to a single reference
position, we consider the centroid of the positions at which the phase measure-
ment data was collected as the ground truth.

The generated phase and frequency measurement are input to the tracking
algorithm. The calculated target positions are compared to the ground truth
and the average error is calculated.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 B. Kusý et al.

Fig. 5. Our experimental setup at the Vanderbilt football stadium. 12 infrastructure
nodes (visible ones are circled on the picture), were positioned on the tripods on the
field and on the bleachers in the stands.

Results. We ran the simulation in a 80×90 m area covered by 12 infrastructure
nodes, which is identical to our experimental setup described in the next section.
The phase measurement time was set to 40 ms. The phases were measured at
11 channels in the 400–460 MHz frequency range. We used a 4-second position
refresh period. For a particular set of simulation parameters, we used the same
trajectory defined by randomly generated waypoints within the area of interest.
We varied the standard deviation of the Gaussian phase measurement error
between 0% and 10% of the wavelength and the target speed between 0 and
2 m/s. A typical standard deviation of the phase error measured by our hardware
varies between 3 and 5%, depending on the environment.

The simulation results are shown in Fig. 4. As expected, position errors in-
crease as the speed or the phase measurement errors increase. When the target
speed is smaller than 2m/s and there are no significant phase errors present,
the position errors are below half a meter. The average position errors exceed
one meter only for a large (10%) phase error. The negative effect of large noise
combined with large speed is that the tracking algorithm is not able to compute
any location for a significant number of measurements, as discussed in Sect. 3.3.

It is interesting to see that for speeds less than 1.5 m/s, the effect of phase
measurement error of 5% and under is very similar. The implications of this
finding are twofold. First, this means that our tracking algorithm is resilient to
errors up to 5% of the wavelength. Second, this result tells us that increasing
the precision of the phase measurement, or using a more precise numerical rep-
resentation of the phase data such that the errors are bounded by 5% of the
wavelength would yield no improvement in the tracking results.

4.2 Experimental Results

We have tested our system at the Vanderbilt football stadium using XSM motes
by Crossbow [16] (a version of the Berkeley Mica2 mote in a weatherproof

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 63

a) test results b) histogram of errors

0

5

10

15

20

25

30

35

40

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

position estimate error (m)

%

Fig. 6. a) shows a test run in which the target moves along the line segments, 12 black
circles show the infrastructure nodes and the crosses show the calculated locations. b)
shows the histogram of distances of the calculated locations from the trajectory: the
average is 37 cm, the maximum is 1.5 m and the dataset size is 148.

package), running TinyOS [9]. 12 infrastructure nodes were placed at known
locations, 6 of them on the field and the other 6 in the stands on one side of
the stadium. The trajectory, spanning the whole area, was defined by a series of
waypoints. We assume that between the points, the tracked object travelled ap-
proximately along a straight line at a constant speed between 1.5 to 2 m/s. The
test area that we covered was approximately 80 × 90 m. We achieved a location
refresh rate of 3 seconds with an additional 2 second latency. The calculated loca-
tion and trajectory of the target were available on the internet through Google
Earth in real-time. Fig. 5 shows the photo of our experimental setup, Fig. 6
presents the results of one of the test runs in our Java tool and Fig. 7 shows a
snapshot of Google Earth.

The elevation map of the area was available to us, so we were only interested
in the 2-dimensional location error. For every calculated position, we computed
its distance from the closest point on the trajectory and show the corresponding
histogram in Fig. 6b.

This evaluation metric, however, underestimates the actual 2-dimensional lo-
cation error as we do not have any information on where on the trajectory the
target was at the moment of the corresponding measurement. By simulation,
we found that the distance from the trajectory is typically 65% more than the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 B. Kusý et al.

Fig. 7. The current location and trajectory of the tracked node could be accessed
through Google Earth in real-time. A large balloon shows the locations of the tracked
node while smaller ones indicate the twelve infrastructure nodes.

actual location error: therefore, we estimate that the average location error was
0.61m in our experiment. This result aligns well with the simulated data: if the
standard deviation of the phase errors is between 2.5% and 5% of the wavelength,
and the target speed is 1.5 m/s to 2 m/s, the location errors range from 0.34 m
to 0.71 m.

5 Related Work

Both node localization and tracking are well established areas in sensor networks
research. These algorithms typically rely on distance measurements to estimate
the range between neighboring nodes. Several techniques can be used to generate
these measurements, including time-of-flight, time difference of arrival, angle of
arrival, phase and/or signal strength measurements, and others. A comprehen-
sive survey of different approaches can be found in [7].

The Global Positioning System is perhaps the most widely published localiza-
tion system [10]. GPS provides reliable worldwide coverage, but is considered to
be a coarse-grained, high-cost and power inefficient solution in sensor networks.
State of the art low-power GPS receiver ICs cost around $50, have an accuracy
of 3–5m and power consumption in the 50-100mW range.

Among the typical sensor network solutions, time-of-flight ranging that com-
bines acoustic and RF signals tends to give much better results than RF received
signal strength (RSSI) because of the high variance of RSSI [8,14]. Ultrasound
and more recently broad ultrasound measurements have become popular, es-
pecially for fine-grained indoors localization and tracking [4,13,6]. The system
presented in [5] avoids using range measurements by using only connectivity
between nodes at the price of decreased accuracy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

inTrack: High Precision Tracking of Mobile Sensor Nodes 65

Few of the published tracking algorithms have been demonstrated at scale.
The system published in [11] is capable of 1 Hz location update rate with a
few centimeter average error, but the experimental setup uses 6 anchor nodes to
track the target within a 1.5 × 2 m area. The connectivity-based algorithm in
[5] covers a somewhat larger area (10 × 10 m) with 4 anchor nodes and achieves
a 2-second update rate and an accuracy of 1.83 m.

Most tracking algorithms assume the existence of fixed nodes with known lo-
cations. The errors of these locations can significantly degrade the accuracy of
the calculated target location. Pathirana et al. [12] have shown that the known
trajectory of the target can be used to discover and improve the location esti-
mates of the fixed nodes. Taylor [15] have improved this to the point where they
perform localization and tracking simultaneously, without the knowledge of the
mobile node’s trajectory. However, their system relies on acoustic ranging and
hence, it requires a fairly dense network.

6 Discussion

We have introduced inTrack, a cooperative tracking system that is able to locate
a moving sensor node with high accuracy over large areas. The system can toler-
ate measurement errors typical in moderate multipath environments. Moreover,
inTrack has been implemented on COTS mote hardware, making its deployment
economically viable.

The experimental evaluation shows 2−3 second update rate and 0.6 m average
error of the location estimates with the target moving up to 2 m/s within a
80 × 90 m area. We have generated a large number of random positions, speeds
and directions in our simulator and verified the performance of inTrack in much
larger scale than was experimentally feasible.

One weakness of inTrack is that it can track only a single target in its current
implementation. Multiple targets would have to serialize their access to the in-
Track system and the update rate of the locations would decrease. One possible
solution is to make the target node a receiver rather than a transmitter. While
our prototype uses the XSM motes that cost several hundred dollars, we envision
that such a tracking system, assuming mass production of specialized hardware,
can work as a cheaper and more accurate version of GPS in such geographically
constrained areas as sports stadiums or amusement parks.

Currently a significant portion of our code runs on a PC, namely the compu-
tationally expensive search that finds intersections of hyperboloids. A solution
could be to find these intersections analytically, enabling the implementation of
the algorithm on resource constrained hardware. Finally, we plan to improve the
current speed limitation of the inTrack system.

Acknowledgments. We would like to thank Peter Volgyesi and Andras Nadas
for their help with the experimental evaluation and Dr. Vladimir Protopopescu
for his helpful comments and suggestions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 B. Kusý et al.

References

1. M. Maróti (et al.): Radio-interferometric geolocation. In Proc. ACM 3rd Confer-
ence on Embedded Networked Sensor Systems (SenSys), San Diego, CA, USA, 2005.

2. B. Kusý, A. Lédeczi, M. Maróti, and L. Meertens: Node-density independent
localization. In Proc. of 5th Int’l Symposium on Information Processing in Sensor
Networks (IPSN SPOTS), Nashville, TN, USA (2006).

3. A. Lédeczi (et. al): Countersniper System for Urban Warfare. ACM Transactions
on Sensor Networks, Vol. 1 (2005), 153–177.

4. M. Addlesee (et al.): Implementing a Sentient Computing System. Computer, vol.
34, no. 8, pp. 50–56, Aug. 2001.

5. N. Bulusu, J. Heidemann, and D. Estrin: GPS-less low-cost outdoor localization
for very small devices. IEEE Personal Communications, 7(5):28-34, Oct 2000.

6. M. Hazas and A. Hopper. Broadband Ultrasonic Location Systems for Improved
Indoor Positioning. IEEE Transactions on Mobile Computing, volume 5, number
5, pages 536-547, May 2006.

7. J. Hightower and G. Borriello: Location Systems for Ubiquitous Computing.
Computer, vol. 34, no. 8, pp. 57-66, Aug. 2001.

8. J. Hightower, R.Want, and G. Borriello: SpotON: An indoor 3D location sensing
technology based on RF signal strength. UW CSE 00-02-02, University of Wash-
ington, Department of Computer Science and Engineering, Seattle, WA, feb 2000.

9. J. Hill and R. Szewczyk and A. Woo and S. Hollar and D. Culler and K. Pister:
System architecture directions for networked sensors. in Proc. of ASPLOS 2000,
Cambridge, MA (2000).

10. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins: Global Positioning
System: Theory and Practice, 4th ed. Springer Verlag, 1997.

11. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localiza-
tion with noisy range measurements. in Proceedings of ACM Sensys, Nov 2004.

12. P. Pathirana, N. Bulusu, S. Jha, and A. Savkin Node localization using mo-
bile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile
Computing, vol. 4, no. 4, Jul/Aug 2005.

13. N.B. Priyantha, A. Chakraborty, and H. Balakrishnan: Cricket Location-Support
System. Proc. Sixth Intl Conf. Mobile Computing and Networking (MobiCom), 2000.

14. A. Savvides, CC. Han, and M. Srivastava: Dynamic finegrained localization in
ad-hoc networks of sensors. In 7th ACM Int. Conf. on Mobile Computing and
Networking (Mobicom), pages 166-179, Rome, Italy, July 2001.

15. C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue: Simultaneous
Localization, Calibration and Tracking in an Ad Hoc Sensor Network. Proc. 5th
Int’l Symposium on Information Processing in Sensor Networks (IPSN), Nashville,
TN, USA (2006).

16. P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless
sensor network platform for detecting rare, random, and ephemeral events. In
Proc. of 4th Int’l Conference on Information Processing in Sensor Networks
(IPSN SPOTS), April 2005.

17. Chipcon: CC1000 Product Information. 2004, http://www.chipcon.com.
18. C. Hu, S. Xu, X. Yang: A Review on Interval Computation – Software and

Applications. Int. J. of Computational and Numerical Analysis and Applications,
Vol. 1, No. 2, pp. 149–162, 2002.

19. B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler: Elapsed Time
on Arrival: A simple and versatile primitive for canonical time synchronization ser-
vices. International Journal of Ad Hoc and Ubiquitous Computing, January 1, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks�

Purushottam Kulkarni, Prashant Shenoy, and Deepak Ganesan

Department of Computer Science
University of Massachusetts, Amherst, MA 01003

{purukulk, shenoy, dganesan}@cs.umass.edu

Abstract. Camera sensor networks—wireless networks of low-power imaging
sensors—have become popular recently for monitoring applications. In this pa-
per, we argue that traditional vision-based techniques for calibrating cameras are
not directly suitable for low-power sensors deployed in remote locations. We pro-
pose approximate techniques to determine the relative locations and orientations
of camera sensors without any use of landmarks or positioning technologies. Our
techniques determine the degree and range of overlap for each camera and show
this information can be exploited for duty cycling and triggered wakeups. We im-
plement our techniques on a Mote testbed and conduct a detailed experimental
evaluation. Our results show that our approximate techniques can estimate the
degree and region of overlaps to within 10% of their actual values and this error
is tolerable at the application-level for effective duty-cycling and wakeups.

1 Introduction

1.1 Motivation

Wireless sensor networks have received considerable research attention over the past
decade, and rapid advances in technology have led to a spectrum of choices of image
sensors, embedded platforms, and communication capabilities. Consequently, camera
sensor networks— networks consisting of low-power imaging sensors [18,19]—have
become popular for applications such as environmental monitoring and surveillance.

Regardless of the end-application, camera sensor networks perform several com-
mon tasks such as object detection, recognition, and tracking. While object detection
involves determining when a new object appears in range of the camera sensors, recog-
nition involves determining the type of the object, and tracking involves using multiple
camera sensors to continuously monitor the object as it moves through the environment.
To effectively perform these tasks, the camera sensor network needs to be calibrated at
setup time. Calibration involves determining the location and orientation of each cam-
era sensor. The location of a camera is its position (3D coordinates) in a reference
coordinate system, while orientation is the direction in which the camera points. By
determining these parameters for all sensors, it is possible to determine the viewable
range of each camera and what portion of the environment is covered by one or more
cameras. The relationship with other nearby cameras, in particular, the overlap in the

� This work was supported in part by National Science Foundation grants EEC-0313747, CNS-
0219520, CNS-052072 and EIA-0098060.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 67–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 P. Kulkarni, P. Shenoy, and D. Ganesan

viewable ranges of neighboring cameras can be determined. This information can be
used by applications to determine which camera should be used to sense an object at a
certain location, to triangulate the position of an object using overlapping cameras, and
to handoff tracking responsibilities from one camera to another as the object moves.

Calibration of camera sensors is well-studied in the computer vision community and
a number of techniques to accurately estimate the location and orientation of cameras
have been proposed [8,22,24]. These techniques assume coordinates of few landmarks
are known a priori and use the projection of these landmarks on the camera’s image
plane, in conjunction with principles of optics, to determine a camera’s coordinates and
orientation.1 In certain cases locations of landmarks are themselves determined using
range estimates from known locations; for instance, a positioning technology such as
Cricket can be used to determine the coordinates of landmarks from known beacon loca-
tions. However, these techniques are not feasible for deployments of ad-hoc low power
camera sensors for the following reasons: (i) Resource constraints: Vision-based tech-
niques for accurate calibration of cameras are compute intensive. Low-power cameras
do not have the computation capabilities to execute these complex mathematical tasks.
Further, images of low-power cameras are often of low fidelity and not well suited for
high precision calibration, (ii) Availability of landmarks: In many scenarios, ad-hoc
camera sensor networks are deployed in remote locations for monitoring mountainous
and forest habitats or for monitoring natural disasters such as floods or forest fires. No
landmarks may be available in remote inhabited locations, and infrastructure support
such as positioning technologies may be unavailable or destroyed, making it difficult to
define new landmarks.

One solution that eliminates the need to use landmarks is it to equip each camera
sensor with a positioning device such as GPS [4] and a directional digital compass [6],
which enable direct determination of the node location and orientation. However, to-
day’s GPS technology has far too much error to be practical for calibration purposes
(GPS can localize an object to within 5-15m of its actual position). Ultrasound-based
positioning and ranging technology [16] is an alternative which provides greater ac-
curacy. But use of additional hardware with low-power cameras both consumes more
energy and in some cases, can be prohibitive due to its cost. As a result, accurate cal-
ibration is not always feasible for initialization of resource-constrained camera sensor
networks with limited or no infrastructure support.

Due to these constraints, in this paper we ask a fundamental question: is it possible
to initialize camera sensors without the use of known landmarks or without using any
positioning technology? In scenarios where accurate camera calibration may not always
be feasible, determining relative relationships between nearby sensor nodes may be the
only available option. This raises the following questions:

– How can we determine relative locations and orientations of camera sensors with-
out use of known landmarks or positioning infrastructure?

– What kind of accuracy can these approximate initialization techniques provide?
– What is the performance of applications based on approximate initialization?

1 Vision-based calibration techniques can also determine a camera’s internal parameters such as
the camera focal length and lens distortion, in addition to external parameters such as location
and orientation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 69

1.2 Research Contributions

To address the above challenges, in this paper, we propose novel approximate initial-
ization techniques for camera sensors. Our techniques rely only on the inherent picture-
taking ability of cameras and judicious use of on-board computational resources to ini-
tialize each camera relative to other cameras in the system. No infrastructure support for
beaconing, range estimation or triangulation is assumed. Our initialization techniques
are computationally lightweight and easily instantiable in environments with little or no
infrastructure support and are well suited for resource-constrained camera sensors.

Our techniques rely on two key parameters—the degree of overlap of a camera with
other cameras, and the region of overlap for each camera. We present approximate tech-
niques to estimate these parameters by taking pictures of a randomly placed reference
object. To quantify the accuracy of our methods, we implement two techniques—duty-
cycling and triggered wakeup—that exploit this initialization information.

We have implemented our initialization techniques on a testbed of Cyclops [18] cam-
eras and Intel Crossbow Motes [14] and have conducted a detailed evaluation using the
testbed and simulations. Our experiments yield the following results:

– Our approximate initialization techniques can estimate both k-overlap and region
of overlap to within 10% of the actual values.

– The approximation techniques can handle and correct for skews in the distribution
of reference point locations.

– The application-level accuracy using our techniques is 95-100% for determining
the duty-cycle parameter and 80% for a triggered wakeup application.

2 Problem Formulation

We consider a wireless network of camera sensors deployed in an ad-hoc fashion with
no a priori planning. Each sensor node is assumed to consist of a low-power imaging
sensor such as the Cyclops [18] or the CMUCam [19] connected to an embedded sensor
platform such as the Crossbow Mote [14] or the Telos [15]. No positioning hardware is
assumed to be present on the nodes or in the environment. Given such an ad-hoc camera
sensor network, our goal is to determine the following parameters for each sensor node:

– Degree of overlap, which is the fraction of the viewable range that overlaps with
other nearby cameras; specifically we are interested in the k-overlap, which is the
fraction of the viewable region that overlaps with exactly k other cameras.

– Region of overlap, which is the spatial volume within the viewable region that over-
laps with another camera. While the degree of overlap indicates the extent of the
viewable region that overlaps with another camera, it does not indicate which por-
tion of the viewable range is covered by another camera. The region of overlap
captures this spatial overlap and is defined as the 3D intersection of the viewable
regions of any pair of cameras.

Our goal is to estimate these parameters using the inherent picture-taking capability
of cameras. We assume the presence of a reference object that can be manually placed
at different locations in the environment; while the coordinates of the reference object

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 P. Kulkarni, P. Shenoy, and D. Ganesan

are unknown, the sensors can take pictures to determine if the object can be viewed
simultaneously by two or more cameras from a particular location. Our goal is to design
techniques that use this information to determine the degree and region of overlap for
the various nodes. The physical dimensions of the reference object as well as the focal
length f of each camera is assumed to be known a priori.

3 Approximate Initialization

In this section, we describe approximate techniques to determine the degree of overlap
and region of overlap for camera sensors.

3.1 Determining the Degree of Overlap

As indicated earlier, degree of overlap is defined by the k-overlap, which is the fraction
of the viewing area simultaneously covered by exactly k cameras. Thus, 1-overlap is
the fraction of a camera’s viewable region that does not overlap with any other sensor;

Camera 1

Camera 2

Camera 3

k1

k1

k1
k1

k1k3

k2

k2

Fig. 1. Different degrees of
overlap (k-overlap) for a
camera

2-overlap is the fraction of region viewable to itself and
one other camera, and so on. This is illustrated in Fig-
ure 1 where k1 denotes the region covered by a single
camera, k2 and k3 denote the regions covered by two and
three cameras, respectively. It follows that the union of the
k-overlap regions of a camera is exactly the total view-
able range of that camera (i.e., the sum of the k-overlap
fractions is 1). Our goal is to determine the k-overlap for
each camera, k = 1 . . . n, where n is the total number of
sensors in the system.

Estimating k-overlap. Our approximate technique employs random sampling of the
three-dimensional space to determine the k-overlap for each camera sensor. This is
done by placing an easily identifiable reference object at randomly chosen locations
and by having the camera sensors take pictures of the object. Let each object location be
denoted as a reference point (with unknown coordinates). Each camera then processes
its pictures to determine which reference points are visible to it. By determining the
subset of the reference points that are visible to multiple cameras, we can estimate the k-
overlap fractions for various sensors. Suppose that ri reference points from the total set
are visible to camera i. From these ri reference points, let rk

i denote the reference points
that are simultaneously visible to exactly k cameras. Assuming an uniform distribution
of reference points in the environments, the k-overlap for camera i is given by

Ok
i =

rk
i

ri
(1)

Depending on the density of reference points, error in the estimate of OK
i can be con-

trolled. The procedure is illustrated in Figure 2(a), where there are 16 reference points
visible to camera 1, of which 8 are visible only to itself, 4 are visible to cameras 1 and
3 and another 4 to cameras 1, 2, and 3. This yields a 1-overlap of 0.5, 2-overlap and 3-
overlap of 0.25 for camera 1. k-overlaps for other cameras can be similarly determined.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 71

Camera 1

Camera 2

Camera 3

Field−of−view

Camera 1

Camera 2

Camera 3

Field−of−view

Camera 1

(a) Uniform distribution (b) Skewed Distribution (c) Weighted Approximation

Fig. 2. k-overlap estimation with distribution of reference points

Handling skewed reference point distributions. The k-overlap estimation technique
presented above assumes uniform distribution of reference points in the environment.
In reality, due to the ad-hoc nature of the deployment and the need to calibrate the
system online in the field, the placement of reference objects at randomly chosen lo-
cations will not be uniform. The resulting error due to a non-uniform distribution is
illustrated in Figure 2(b), where our technique estimates the 1-, 2- and 3-overlap for
camera 1 as 2

3 , 2
9 , 1

9 as opposed to the true values of 1
2 , 1

4and1
4 respectively. Thus,

we need to enhance our technique to correct for skews in the reference point
distribution.

The basic idea behind our enhancement is to assign a weight to each reference point,
where the weight denotes the volume that it represents. Specifically, points in dense
populated region are given smaller weights and those in sparely populated regions are
given higher weights. Since a higher weight can compensate for the scarcity of ref-
erence points in sparely populated region, we can correct for skewed distributions of
reference points. Our enhancement is based on the computational geometry technique
called Voronoi tessellation [5]. In two dimensions, a Voronoi tessellation of a set of
points is the partitioning of the plane into convex polygons such that all polygons con-
tain a single generating point and all points within a polygon are closest to the corre-
sponding generating point. Figure 2(c) shows a skewed distribution of reference points
in the 2D viewing area of a camera and the corresponding Voronoi tessellation. Each
reference point in the camera is contained within a cell, with all points in a cell closest
to the corresponding reference point. Given a skewed distribution of reference points,
it follows that densely situated points will be contained within smaller polygons, and
sparsely situated points in larger polygons. Since the size of each polygon is related to
the density of the points in the neighborhood, it can be used as an approximation of the
area represented by each point. Voronoi tessellations can be extended to points in three
dimensions, with each point contained with a 3D cell instead of a polygon.

Using Voronoi tessellation, each reference point is assigned a weight that is approx-
imately equal to volume of the cell that it lies in. The k-overlap is then computed as

Ok
i =

wk
i

wi
(2)

where wk
i is the cumulative weight of all reference points that are simultaneously visi-

ble to exactly k cameras and wi is the total weight of all the cells in the viewable region
of camera i. Observe that when the reference points are uniformly distributed, each

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 P. Kulkarni, P. Shenoy, and D. Ganesan

point gets an equal weight, and the above equation reduces to Equation 1. Note that
Voronoi tessellation requires the coordinates of reference points in order to partition
the viewable region into cells or polygons. Section 3.2 describes how to approximately
estimate this in .

Approximate Tessellation. Since tessellation is a compute-intensive procedure that
might overwhelm the limited computational resources on a sensor node, we have de-
veloped an approximation. Instead of tessellating the 3D viewing region of a camera
into polyhedrons, a computationally expensive task, the viewing region is discretized
into smaller cubes. For each cube, the closest viewable reference point from the cen-
ter of the cube is calculated. The volume of the cube is added to the weight of that
reference point. When all cubes are associated and their volumes added to the respec-
tive reference points, the weight of each reference points is in proportion to the den-
sity of points in the vicinity—points in less dense regions will have higher weights
than points in less dense regions, thereby yielding an approximation of the tessellation
process.

3.2 Determining the Region of Overlap

Since k-overlap only indicates the extent of overlap but does not specify where the
overlap exists, our techniques also determine region of overlap for each camera. Like
before, we assume a reference object placed at randomly chosen locations. Using these
points, first a Voronoi tessellation of the viewing area is obtained for each camera.
The region of overlap for any two cameras Ci and Cj is simply the the union of cells
containing all reference points simultaneously visible to the two cameras. Figure 3(c)
shows the Voronoi tessellation of the 2D viewing region of camera 1, the reference
points viewable by cameras 1 and 2, and the approximate region of overlap (shaded
region) for (C1, C2). Thus, our approximate tessellation (described in Section 3.1) can
be used to determine the region of overlap for all pairs of cameras in the system.

Estimating reference point locations. As indicated before, the tessellation process re-
quires the locations of reference points. Since no infrastructure is available, we present
a technique to estimate these locations using principles of optics. A key insight is that
if each camera can determine the coordinates of visible reference points relative to it-
self, then tessellation is feasible—absolute coordinates are not required. Assuming the
origin lies at the center of the lens, the relative coordinates of a point are defined as
(dr, vr), where dr is its distance from the origin, and vr is a vector from the origin in
the direction of the reference point that defines its orientation in 3D space.

We illustrate how to determine the distance dr from the camera in 2-dimensions.
We have assumed that the size of the reference object is known a prior, say s. The
focal length f is also known. Then the camera first estimates the size of the image pro-
jected by the object—this is done by computing the bounding box around the image,
determining the size in pixels and using the size of the CMOS sensor to determine the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 73

dr

Lens
Image
plane

f
s’

s
d rv r

�
�
�
�

�
�
�
�

Lens

O

plane
Image

R

location)
(unknown

P
(−x,−y,−f)

f

����
����
����
����
����
����

����
����
����
����
����
����

Camera 1
Camera 2

(a) Object and image (b) Estimation of reference (c) Region of overlap using
relation in 2D point location Voronoi tessellation

Fig. 3. Region of overlap estimation using reference points and Voronoi tessellation

size of those many pixels. If s′ denotes the size of the image projected by the reference
object on the camera, then from Figure 3(a) , the following condition holds

tanθ =
s

dr
=

s′

f
(3)

Since s, s′ and f are known, dr can be computed. A similar idea holds in 3D space
where instead of size, area of the object has to be considered.

Next, to determine the orientation of the reference point relative to the camera, as-
sume that the reference object projects an image at pixel coordinates (x, y) on the image
plane of the camera. Then the vector vr has the same orientation as the vector that joins
the centroid of the image to center of the lens (i.e., the origin). As shown in Figure 3(b),
the vector PO = (x, y, f) has the same orientation as vr, where O is the origin and P
is the centroid of the image with coordinates (−x, −y, −f). Since (x, y) can be deter-
mined by processing the image and f is known, the relative orientation of the reference
point can be determined.

4 Applications

In this section, we describe how camera that are initialized approximately can satisfy
application requirements.

4.1 Duty-Cycling

Duty-cycling is a technique to operate sensors in cycles of ON and OFF durations to in-
crease lifetime while providing the desired event-detection reliability and also to bound
the maximum time to detect an event. The duty-cycling parameter d is commonly de-
fined as the fraction of time a sensor is ON. An important criteria in deciding the duty-
cycle parameter is the degree of overlap. Sensors with high coverage redundancy can be
operated at low duty cycles to provide desired event detection probability, whereas those
with lower redundancy will require higher duty cycles. One of the several techniques to
estimate the duty-cycle parameter based on degree of overlap is as follows,

di =
n∑

k=1

Ok
i × 1

k
(4)

where, di is the duty-cycle parameter of camera i, Ok
i the fraction of k-overlap with the

neighboring cameras and n the total number of cameras. The intuition is to duty-cycle
each camera in proportion to its degree of overlap with neighboring cameras.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 P. Kulkarni, P. Shenoy, and D. Ganesan

4.2 Triggered Wakeup

threshold
Distance

Projection
line Object

Image

Fig. 4. Region of overlap for
triggered wakeup

Object tracking involves continuous monitoring of an
object—as the object moves from the range of one camera
to another, tracking responsibilities are transferred via a
handoff. Since cameras may be duty-cycled, such a hand-
off involves a triggered wakeup to ensure that the destina-
tion camera is awake. A naive solution is to send triggered
wakeups to all overlapping cameras and have one of them
take over the tracking. While doing so ensures seamless
handoffs, it is extremely wasteful in terms of energy by
triggering unnecessary wakeups. A more intelligent tech-
nique is to determine the trajectory of the object and using
the region of overlap determine which camera is best po-
sitioned to take over tracking duties and only wake it up. However, since the object’s
location cannot be calculated without knowledge of accurate camera parameters, its tra-
jectory can not be accurately determined. The only known information about the object
is its image on the camera’s image plane—the object is known to lie along a line that
connects the image to the center of the lens. As shown in Figure 4, we refer to this line
as the projection line, the line on which the object must lie. We can exploit this infor-
mation to design an intelligent triggered wakeup technique. Any camera whose region
of overlap intersects with the projection line can potentially view the object and is a
candidate for a handoff. To determine all such cameras, we first determine the set of
reference points within a specific distance threshold of the line (see Figure 4). To de-
termine these reference points, equidistant points along the length of the projection line
are chosen and reference points within the distance threshold are identified. Next, the
set of neighboring cameras that can view these reference points is determined (using
information gathered during our initialization process). One or more of these camera
can then be woken up. Depending on the extent of overlap with the projection line, can-
didate cameras are prioritized and woken up in priority order—the camera with highest
overlap has the highest probability of detecting the object on wakeup and is woken up
first. Two important parameters of the scheme are the distance threshold and the maxi-
mum number of cameras to be woken up. A large distance threshold will capture many
reference points and yield many candidates for wakeup, while a small threshold will
ignore overlapping cameras. The maximum number of cameras to be woken up bounds
the redundancy in viewing the same object by multiple cameras—a small limit may
miss the object whereas a large limit may result in wasteful wakeups. We discuss the
effect of these parameters as part of the experimental evaluation.

5 Prototype Implementation

System Design. The approximate initialization procedure involves taking pictures of
reference points (or objects). Reference points are objects like a ball with a unique color
or a light source, that can be easily identified by processing images at each camera. Each
camera after taking a picture, processes the image to determine if it can view a reference
point. If a reference point is visible, it calculates the location of the reference point on its

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 75

Object Detection

Image Grabber

Bounding Box

Cyclops HostMote

View Table

Initialization
procedureview

information

trigger

(a) Network Setup (b) Software architecture

Fig. 5. Setup and software architecture of prototype implementation

image plane and if possible estimates the location of the reference point. The location
can be estimated using an approximation of the distance of the reference point from
the camera. The distance can be determined if dimensions of the reference object are
known a priori along with the size of it’s image on the camera’s image plane. The image
location and distance of object information is exchanged with all other cameras in the
network. The data recorded at each camera can be stored as table of tuples,

< Rk : Ci, ui, vi, di, Cj , uj, vj , dj ... >

where, Rk is the kth reference point visible to camera i, (ui, vi) is the projection loca-
tion of the reference point in the image plane and di is the distance of the reference point
from the camera. The tuple also stores information from each camera that can view the
reference point simultaneously. Multiple reference points are generated by placing the
reference object at several locations.

The network setup for our prototype implementation is shown in Figure 5(a). The
network consists of 8 cameras covering a region of 8f t × 6f t × 17f t. The camera are
equidistantly placed on the longest side, each at a height of 3f t facing each other and
viewing inside the cubical volume. The depth-of-view for each camera is 8f t and the
horizontal and vertical viewing regions are 7f t and 6f t respectively. The setup is used
to estimate and compare k-overlap and region of overlap for each camera.

Hardware Components. We used the Cyclops [18] camera sensor in our prototype im-
plementation to evaluate the approximate initialization techniques. The Cyclops camera
sensor consists of a ADCM 1700 CMOS camera module, and supports image resolu-
tions of 32x32, 64x64 and 128x128. Image resolution of 128x128 is used in the ex-
perimental evaluation. The Cyclops node also has an on-board ATMEL ATmega128L
micro-controller, 512 KB external SRAM and 512 KB Flash memory. The on-board
processing capabilities of the Cyclops are used for object detection and to detect the
size of object’s image. Each Cyclops sensor is connected to a Crossbow Mote (referred
to as the HostMote) and they communicate via the I2C interface. The HostMote is
also used to receive and send wireless messages and store initialization information on
behalf of the Cyclops. A mote is also used as a remote control to send synchronized
sampling triggers to detect reference points during the initialization process. A glowing
ball (a translucent ball fitted on a light bulb) is used as a reference object and is manu-
ally placed at several locations to generate reference points for initialization.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 P. Kulkarni, P. Shenoy, and D. Ganesan

Software Components. Both the Cyclops sensors and the Motes run TinyOS [21]. Each
Cyclops communicates with it’s attached mote using the I2C interface and the motes
communicate with each other via their wireless interface (see Figure 5(b)).

Cyclops Onboard Tasks: Each Cyclops is responsible for taking images and pro-
cessing them locally to detect the reference objects. On receiving a trigger from the
HostMote each Cyclops takes a picture and processes it to detect and recognize refer-
ence objects. The results are communicated back to the HostMote.

HostMote Tasks: The HostMote drives each Cyclops to detect reference objects
and stores all the initialization information for each camera. Once an reference object
is detected, the HostMote estimates the distance of the object from the camera and
transmits a broadcast message indicating visibility of the reference object, coordinates
of the object on it’s image plane and distance of object from the camera. Further, the
HostMote receives similar broadcasts from other nodes and maintains the ViewTable, a
table of tuples representing viewability information of each reference point.

Trigger Mote Tasks: The trigger mote is used as a remote control for synchronized
detection of the reference object. Once a reference object is placed in a location, the
trigger mote sends a wireless broadcast trigger to all HostMotes, which in turn trigger
the attached Cyclops sensors.

6 Experimental Evaluation

In this section we present a detailed experimental evaluation of the approximate ini-
tialization techniques using both simulation and implementation based experiments.
Specifically, we evaluate the accuracy of the approximate initialization procedure in es-
timating the degree of overlap and region of overlap of camera sensors. In addition, we
evaluate the effect of skew in location of reference points on the accuracy of estimation.
Further, we also evaluate the performance of an triggered wakeup application which
demonstrates effective use of the region of overlap information.

6.1 Simulation Setup

The simulation setup used for evaluation consisted of a cubical region with dimensions
150x150x150. Two cases, one with 4 cameras and the other with 12 cameras are used.
In the first case, 4 cameras are placed at locations (75,0,75), (75,150,75), (0,75,75),
(150,75,75), oriented perpendicular to the side plane looking inwards. The k-overlap
at each camera is as follows: 1-overlap: 0.54, 2-overlap: 0.23, 3-overlap: 0.07 and 4-
overlap: 0.16. In the second case, additional 8 cameras are placed at the 8 corners of
the cube and each of them is oriented inwards with the central axis pointing towards the
center of the cube.

An uniform distribution of reference points was simulated by uniformly distributing
points in the cubical viewing region. To simulate a skewed distribution, a fraction of
reference points were distributed in a smaller region at the center of the viewing region
and the rest were distributed in the entire viewing area. For example, a region of size
25x25x25 at the center of the viewing region, in different cases, had atleast 25%, 33%,
50%, 66% and 75% of total points within its boundary. We also used restricted regions
of sizes 50x50x50 and 75x75x75 with varying fractions of skew in our evaluation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 77

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
1−overlap

reference points

er
ro

r

non−weighted
weighted

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
2−overlap

reference points

er
ro

r

non−weighted
weighted

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
3−overlap

reference points

er
ro

r

non−weighted
weighted

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
4−overlap

reference points
er

ro
r

non−weighted
weighted

Fig. 6. Evaluation of k-overlap estimation scheme with uniform distribution of reference points

6.2 Degree of Overlap Estimation

In this section we present evaluation of the techniques used to estimate k-overlap, the
degree of overlap metric, and its use to estimate the duty-cycling parameter.

Initialization with uniform distribution of reference points. Figure 6 plots the error
in k-overlap estimation using the four camera setup with uniform distribution of ref-
erence points. The absolute difference in the approximate estimation and the exact k-
overlap fraction averaged over the 4 cameras is reported as error. The error in k-overlap
estimation using both the non-weighted and weighted techniques is similar.

Figure 6 also plots the effect of number of viewable reference points— reference
points viewable by atleast a single camera— on k-overlap estimation. The error in k-
overlap estimation decreases with increase in number of reference points for both the
non-weighted and weighted schemes. Error in 1-overlap estimation with the weighted
scheme decreases from 0.075 to 0.04 with 50 and 150 reference points respectively.

Initialization with skewed distribution of reference points. Figure 7 plots the k-
overlap estimates with non-uniform distribution of reference points. The results are
averaged for the different fractions of skew within a restricted region of 25x25x25.
As seen from the figure, the weighted scheme accounts for skew better than the non-
weighted scheme—with most benefits for 1-overlap and 4-overlap estimation. The non-
weighted scheme performs poorly as it only counts the number of simultaneously view-
able points, while the weighted scheme accounts for the spatial distribution of the
points. Further, with increase in number of reference points, the error with the weighted
scheme decrease, whereas that with the non-weighted scheme remains the same. Fig-
ure 8(a) plots the k-overlap with 150 reference points, and it shows that the weighted
scheme performs better than the non-weighted scheme. The error with the non-weighted
scheme for 1 and 4 overlap is worse by a factor of 4 and 6 respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 P. Kulkarni, P. Shenoy, and D. Ganesan

0 100 200 300
0

0.2

0.4

0.6

0.8

1
1−overlap

reference points

er
ro

r

non−weighted
weighted

0 100 200 300
0

0.2

0.4

0.6

0.8

1
2−overlap

reference points

er
ro

r

non−weighted
weighted

0 100 200 300
0

0.2

0.4

0.6

0.8

1
3−overlap

reference points

er
ro

r

non−weighted
weighted

0 100 200 300
0

0.2

0.4

0.6

0.8

1
4−overlap

reference points
er

ro
r

non−weighted
weighted

Fig. 7. Evaluation of weighted k-overlap estimation with skewed distribution of reference points

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k−overlap

er
ro

r

non−weighted
weighted

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

Fraction representing skew

er
ro

r

non−weighted
weighted

50 100 150 200 250
0

5

10

15

20

25

30

reference points

P
er

ce
nt

ag
e

er
ro

r

non−weighted
weighted

(a) k-overlap (b) Effect of skew (c) Duty-cycle parameter

Fig. 8. Evaluation of the weighted k-overlap estimation scheme

Figure 8(b) plots error in estimation of 1-overlap with 150 reference points and vary-
ing skew. As skew increases, so does the error in both non-weighted and weighted
schemes—error with the weighted scheme being smaller than the non-weighted scheme.
The increase in error is also more gradual with the weighted scheme as compared to the
non-weighted scheme. The error with the non-weighted scheme increases from 0.26 to
0.49 with increase in skew fraction from 25% to 75% and the corresponding values for
the weighted scheme are 0.045 and 0.09 respectively.

Duty-Cycling. The percentage error in duty-cycle parameter estimation (see Section 4.1)
using the k-overlap estimates is shown in Figure 8(c). As seen from the figure, error
using the non-weighted scheme is close to 24% and remains unchanged with increase
in reference points. Whereas, error with the weighted scheme is 5% even with only 50
points and decreases very close to zero with more than 150 points.

From the results presented above, we conclude that the weighted k-overlap estima-
tion scheme is well suited to estimate degree of overlap of cameras. The scheme per-
forms identical to the non-weighted scheme with uniform distribution of reference points

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 79

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

#reference points

P
er

ce
nt

ag
e

er
ro

r

camera 1
camera 2
camera 3
camera 4

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Wakeup Threshold (#cams)

F
ra

ct
io

n
of

 p
os

iti
ve

 w
ak

eu
ps

100 ref. pts
200 ref pts.
300 ref. pts

10 20 30 40
0

0.2

0.4

0.6

0.8

1

Wakeup distance threshold

F
ra

ct
io

n
of

 p
os

iti
ve

 w
ak

eu
ps

ncams=1
ncams=2
ncams=3
ncams=4
ncams=5

(a) Effect of number (b) Effect of (c) Effect of
of reference points number of cameras distance threshold

Fig. 9. Region of overlap estimation and wakeup heuristic performance

and significantly better with non-uniform distributions. The application-level error in
determining the duty-cycle parameter using the weighted scheme is close to zero.

6.3 Region of Overlap Estimation

In this section we present evaluation of region of overlap estimation and the triggered
wakeup heuristic that uses this estimate. Figure 9(a) plots results evaluating the effect
of number of reference points on region of overlap estimation. The percentage error
reported is the absolute error in estimated volume corresponding to a region of overlap
and the exact volume. As seen in Figure 9(a), with uniform distribution of reference
points, the percentage error of all four cameras follows a similar trend. With 50 refer-
ence points the percentage error for the four cameras is between 21-23% and with 100
reference points is 12-14%. With higher number of reference points the error decreases
and so does the standard deviation. With 200 reference points the error is 7-8% and
with 250 points is 6-7%. The above results show that region of overlap between pair of
cameras can be estimated with low error—6-7% with uniform distribution in our setup.

Wakeup Heuristic. Next, we evaluate effectiveness of the wakeup heuristic based on
the region of overlap estimates with the 12-camera setup. Figure 9(b) plots the effect of
maximum number of cameras triggered on the fraction of positive wakeups, i.e., frac-
tion of cases when atleast one of the triggered cameras could view the object. As seen
from the figure, with increase in maximum number of cameras triggered per wakeup,
the fraction of positive wakeups increases. Further, the fraction also increases with in-
crease in total reference points in the environment. The fraction of positive wakeups
with a maximum of 2 cameras to be triggered is 0.7 and 0.88 for 100 and 300 refer-
ence points respectively with a distance threshold (see Section 4.2) of 20 inches. With
a maximum of 5 cameras to be triggered the corresponding fractions are 0.77 and 0.93
respectively. The fraction of positive wakeups is over 0.8 with a maximum of 2 wake-
ups per trigger. The result shows that the wakeup heuristic based on region of overlap
estimate can achieve high fraction of positive wakeups—close to 80% accuracy with 2
cameras woken up per trigger.

Another parameter that influences the performance of the heuristic is the distance
threshold—the distance along the projection of the object’s image used to approximate
overlapping cameras. As shown in Figure 9(c), with increase in distance threshold from

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 P. Kulkarni, P. Shenoy, and D. Ganesan

Camera Error

1 1.5%
2 7.1%
3 4.9%
4 5.8%
5 8.7%
6 3.1%
7 7.9%
8 6.7%

Camera Error

1 2.4%
2 2%
3 6.4%
4 10.8%
5 3%
6 4.7%
7 4.3%
8 0.65%

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

True Distance (inches)

P
er

ce
nt

ag
e

er
ro

r

(a) k-overlap error (b) Region-of-overlap error (c) Distance estimation error

Fig. 10. Initialization using prototype implementation

10 to 20 with 200 reference points, the fraction of positive wakeups increases and re-
mains relatively constant for a maximum 2, 3, 4 and 5 triggered cameras. With just
one camera to be woken up for each trigger, the fraction of positive wakeups decreases
with further increase (beyond 20) in distance threshold. This indicates that the distance
threshold is an important factor affecting the performance of the heuristic and for our
setup a threshold of 20 yields best performance.

6.4 Implementation Results

In this section, we evaluate the estimation of k-overlap and region of overlap using
our prototype implementation. As described in Section 5, we used 8 cameras in our
setup and a glowing ball(1.5 inches in diameter) as a reference object. The object was
manually placed at several locations to approximate an uniform distribution of reference
points. Table 10(a) shows the average k-overlap percentage error at each camera. The
percentage error in k-overlap estimation over all cameras is 2-9%.

We also evaluate the accuracy of region of overlap estimate between pairs of cameras
in the 8-camera setup. Figure 10(b) tabulates the average percentage error estimating the
region of overlap between pairs of cameras. The average error in estimating the region
of overlap between pairs of cameras varies form 1-11% for our setup. An important
factor that affects the region of overlap estimate is the distance estimate of the object
from the camera. Figure 10(c) plots the percentage error in estimating the distance of
the object from the camera based on its image size. As can been from the figure, the
error is varies from 2-12%. For our setup, the region of overlap estimates show that the
error is below 11% inspite of the error in distance estimation of the object.

Our results show that the approximate initialization techniques are feasible in real-
world deployments and for our setup had errors close to 10%.

7 Related Work

Several techniques have been developed by the vision community for accurate camera
calibration that use a set of reference points with known locations [22,24]. In sen-
sor networks, techniques like [9,10,23] are specialized to estimate only the extrinsic
parameters of cameras in an exact manner, typically using additional infrastructure or

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Approximate Initialization of Camera Sensor Networks 81

hardware. Further, distributed techniques proposed in [20,13] are suited to calibrate
networked cameras. In [20], cameras collaborate to track an object and reason about
consistent camera location and orientations for observed images. The technique simul-
taneously solves both the object tracking and camera calibration problem. Examples
of systems that use accurately calibrated cameras for video surveillance and tracking
are [12,17]. All the above techniques estimate exact parameters of camera, whereas
our work focuses on approximate initialization of camera networks with no or limited
infrastructure support and camera nodes with limited resources.

Positioning and locationing techniques for sensor nodes other than cameras have
also been well studied. These techniques depend on a beaconing infrastructure and use
several modalities—Active Badge [1] uses IR signals, Active Bat [2] and Cricket [16]
use ultrasound signals and RADAR [3] uses RF signals. Further, GPS [4] is an example
of an outdoor localization system, which can localize object to within 5–15 meters of
their actual location. While these methods can be used to localize cameras and in some
cases to estimate their orientation, they either have high error or are not suitable for
low-power resource constrained camera sensor networks.

There exist several types of camera sensor nodes, each with different resources and
capabilities. The Cyclops [18] and CMUCam [19] are examples of low-power nodes
capturing low-resolution images with limited computation capabilities. XYZ [11] is a
power-aware sensor platform which can be equipped with image sensors. Panoptes [7]
is a camera sensor node comprising of a webcam capturing high-resolution images and
a Intel StrongARM PDA processor for reasonably high computation resources. Even
more sophisticated camera nodes are those with pan-tilt-zoom capabilities connected to
PDA or laptop-class devices. In this work, we are interested in developing techniques
for low-power resource constrained camera nodes, and our solutions can be applied to
more powerful nodes as well.

8 Conclusions

In this paper, we argued that traditional vision-based techniques for accurately calibrat-
ing cameras are not directly suitable for ad-hoc deployments of sensors networks in re-
mote locations. We proposed approximate techniques to determine the relative locations
and orientations of camera sensors without any use of landmarks or positioning technol-
ogy. By randomly sampling the environment with a reference object, we showed how to
determine the degree and range of overlap for each camera and how this information can
be exploited for duty cycling and triggered wakeups. We implemented our techniques on
a Mote testbed. Our experimental results showed that our approximate techniques can
estimate the degree and region of overlaps to within 10% of their actual values and this
error is tolerable at the application-level for effective duty-cycling and wakeups.

References

1. Andy Harter and Andy Hopper. A Distributed Location System for the Active Office. IEEE
Network, 8(1), January 1994.

2. Andy Ward and Alan Jones and Andy Hopper. A New Location Technique for the Active
Office. IEEE Personal Communications, 4(5):42–47, October 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 P. Kulkarni, P. Shenoy, and D. Ganesan

3. P. Bahl and V. N. Padmanabhan. RADAR: An In-building RF-based User Location and
Tracking System. In IEEE INFOCOM , Volume 2, pages 775–784, March 2000.

4. R. Bajaj, S. L. Ranaweera, and D. P. Agrawal. GPS: Location-tracking Technology . Com-
puter, 35(4):92–94, March 2002.

5. M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry.
Springer, Second edition, 2000.

6. Sparton SP3003D Digital Compass. http://www.sparton.com/.
7. W. Feng, B. Code, E. Kaiser, M. Shea, W. Feng, and L. Bavoil. Panoptes: A Scalable Archi-

tecture for Video Sensor Networking Applications. In ACM Multimedia, 2003.
8. B. K. P. Horn. Robot Vision . The MIT Press , First edition, 1986.
9. X. Liu, P. Kulkarni, P. Shenoy, and D. Ganesan. Snapshot: A Self-Calibration Protocol for

Camera Sensor Networks. In IEEE/CreateNet BASENETS, October 2006.
10. D. Lymberopoulos, A. Barton-Sweeny, and A. Savvides. Sensor Localization and Camera

Calibration using Low Power Cameras. Technical Report, Yale University, 2005.
11. D. Lymberopoulos and A. Savvides. XYZ: A Motion-Enabled, Power Aware Sensor Node

Platform for Distributed Sensor Network Applications. In IPSN, April 2005.
12. M. Chu and J. E. Reich and F. Zhao. Distributed Attention for Large Video Sensor Networks.

In Intelligent Distributed Surveillance Systems, 2004.
13. W. Mantzel, H. Choi, and R. Baraniuk. Distributed Camera Network Localization. In Asilo-

mar Conference on Signals, Systems, and Computers, volume 2, November 2004.
14. Crossbow Wireless Sensor Platform. http://www.xbow.com/
15. J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling Ultra-Low Power Wireless Re-

search. In IPSN/SPOTS, April 2005.
16. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket Location-Support Sys-

tem. In ACM MOBICOM, pages 32–43, August 2000.
17. R. Collins and A Lipton and T. Kanade. A System for Video Surveillance and Monitoring.

In American Nuclear Society (ANS) Eighth International Topical Meeting on Robotics and
Remote Systems, 1999.

18. M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and M. Srivastava. Cy-
clops: In Situ Image Sensing and Interpretation in Wireless Sensor Networks. In ACM SEN-
SYS, pages 192–204, November 2005.

19. A. Rowe, C. Rosenberg, and I. Nourbakhsh. A Low Cost Embedded Color Vision System.
In International Conference on Intelligent Robots and Systems, 2002.

20. S. Funiak and C. Guestrin and M. Paskin and R. Suthankar. Distributed Localization of
Networked Cameras. In IPSN, April 2006.

21. TinyOS Website. http://www.tinyos.net/.
22. R. Y. Tsai. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision

Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and
Automation, RA-3(4):323–344, August 1987.

23. F. Y. Wang. A Simple and Analytical Procedure for Calibrating Extrinsic Camera Par ame-
ters. IEEE Transactions on Robotics and Automation, 20(1):121–124, February 2004.

24. Z. Y. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, November 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service
for Distributed Object Tracking

Vinodkrishnan Kulathumani1, Anish Arora1,
Murat Demirbas2, and Mukundan Sridharan1

1 Dept. of Computer Science and Engineering, The Ohio State University
{vinodkri,anish,sridhara}@cse.ohio-state.edu

2 Dept. of Computer Science and Engineering, SUNY at Buffalo
demirbas@cse.buffalo.edu

Abstract. Distributed observation and control of mobile objects via
static wireless sensors demands timely information in a distance sensitive
manner: information about closer objects is required more often and more
quickly than that of farther objects. In this paper, we present a wireless
sensor network protocol, Trail, that supports distance sensitive tracking
of mobile object by in-network subscribers upon demand. Trail achieves
a find time that is linear in the distance from the subscriber to the object,
via a distributed data structure that is updated only locally when objects
move. Trail seeks to minimize the size of the data structure. Moreover,
Trail is reliable, fault-tolerant and energy-efficient, despite the network
dynamics that are typical of wireless sensor networks. We evaluate the
performance of Trail by simulations in a 90-by-90 sensor network and
report on 105 node experiments in the context of a pursuer-evader control
application.

1 Introduction

Tracking of mobile objects has received significant attention in the context of cel-
lular telephony, mobile computing, and military applications [1,2,3,4]. In this pa-
per, we focus on the tracking of mobile objects using a network of static wireless
sensors. Examples of such applications include those that monitor objects [5,6,7],
as well as applications that “close the loop” by performing tracking-based con-
trol; an example is a pursuer-evader tracking application, where a controller’s
objective is to minimize the catch time of evaders.

We are particularly interested in large scale WSN deployments. Large net-
works motivate several tracking requirements. First, queries for locations of ob-
jects in a large network should not be answered from central locations as the
querier may be close to the object but still have to communicate all the way
to a central location. Such a solution not only increases the latency but also
depletes the intermediate nodes of their energy. Plus, answering queries locally
may also be important for preserving the correctness of applications deployed in
large WSNs. As a specific example, consider an intruder-interceptor application,
where a large number of sensor nodes lie along the perimeter that surrounds a

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 83–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 V. Kulathumani et al.

valuable asset. Intruders enter the perimeter with the intention of crossing over
to the asset and the objective of the interceptors is to “catch” the intruders as
far from the asset as possible. In this case, it has been shown [8] that there exist
Nash equilibrium conditions which imply that, for satisfying optimality con-
straints, the latency with which an interceptor requires information about the
intruder it is tracking depends on the relative locations of the two: the closer the
distance, the smaller the latency. This requirement is formalized by the property
of distance sensitivity for querying, i.e, the cost in terms of latency and number
of messages for returning the location of a mobile object grows linearly in terms
of the distance between the object and the querier.

Second, tracking services for large networks must eschew solutions with dis-
proportionate update costs that update object locations across the network even
when the object moves only by a small distance. This requirement is formalized
by the property of distance sensitivity for updates, i.e., the cost of an update is
proportional to the distance moved by the object.

Third, for large networks it is critical that object locations or pointers to the
objects be maintained across only a minimum set of nodes across the network.
Longer tracks have a higher cost of initialization and given that network nodes
may fail due to energy depletion or hardware faults, longer tracks increase the
probability of a failed node along a track as well as increase the cost of detecting
and correcting failures in the track. This requirement motivates us to eschew
solutions that hierarchically partition the network into a fixed number of levels
[3,4,1] Hierarchical partitions not only yield longer track lengths, these solutions
also tend to be sensitive to the failures of nodes higher up in the hierarchy.

Finally, even though solutions should designed to accommodate large net-
works, they should also be simple, energy-efficient and robust for use in small or
medium networks.

Contributions: In this paper, we use geometric ideas to design an energy-
efficient, fault-tolerant and hierarchy-free WSN service, Trail, that supports
tracking-based WSN applications. The specification of Trail is to return the
location of a particular object in response to an in-network subscriber issuing a
find query regarding that object. To this end, Trail maintains a tracking data
structure by propagating mobile object information only locally, and satisfying
the distance sensitivity requirement. Trail avoids the need for hierarchies by
determining anchors for the tracking paths on-the-fly based on the motion of
objects; this allows for minimizing the length of tracking paths. Trail maintains
tracks from each object to only one well-known point, namely, the center of the
network; these tracks are almost straight to the center, with a stretch factor
close to 1. We analytically compare the performance of Trail with that of other
hierarchy based solutions for tracking objects and as seen in Fig. 11 in Section 7,
Trail is more efficient than other solutions. Trail has about 7 times lower updates
costs at almost equal find costs. By using a tighter tracking structure, we are
also able to decrease the upper bound find costs at larger distances and thereby
decrease the average find cost across the network. By not relying on hierarchies
Trail can tolerate faults more locally as well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 85

Trail is a family of protocols. Refinements of a basic Trail protocol are well
suited for different network sizes and find/update frequency settings: One refine-
ment is to tighten its tracks by progressively increasing the rate at which the
tracking structure is updated; while this results in updating a large part of the
tracking structure per unit move, which is for large networks still update distance
sensitive, it significantly lowers the find costs for objects at larger distances. An-
other refinement increases the number of points along a track, i.e, progressively
loosens the tracking structure in order to decrease the find costs and be more
find− centric when object updates are less frequent or objects are static; as an
extreme case, the find can simply follow a straight line to the center. Moreover,
Trail increasingly centralizes update and find as the network size decreases.

Organization of the paper: In Section 2, we describe the system model and
problem specification. In Section 3, we design a basic Trail for a 2-d real plane.
Then, in Section 4, we present an implementation of the basic Trail protocol
for a 2-d sensor network grid. In Section 5, we discuss refinements of the basic
Trail protocol. In Section 6, we present results of our performance evaluation.
In Section 7, we discuss related work and, in Section 8, we make concluding
remarks and discuss future work.

2 Model and Specification

The system consists of a set of mobile objects, and a network of static nodes that
each consist of a sensing component and a radio component. Tracking applica-
tions execute on the mobile objects and use the sensor network to track desired
mobile objects. Object detection and association services execute on the nodes,
as does the desired Trail network tracking service. The object detection service
is an orthogonal service to object tracking. The object detection service assigns
a unique id, P , to every object detected by nodes in the network and stores the
state of P at the node j that is closest to the object P . This node is called the
agent for P and can be regarded as the node where P resides. The association
service can be implemented in a centralized [9] or distributed [10] fashion; the
latter approach would suit integration with Trail.

Trail Network Service: Trail maintains an in-network tracking structure,
trailP , for every object P . Trail supports two functions: find(P, Q), that re-
turns the state of the object P , including its location at the current location of
the object Q issuing the query and move(P, p’, p) that updates the tracking
structure when object P moves from location p′ to location p.

Definition 1 (find(P, Q) Cost). The cost of the find(P, Q) function is the to-
tal communication cost of reaching the current location of P starting from the
current location of Q.

Definition 2 (move(P, p’, p) Cost). The cost of the move(P, p′, p) function
is the total communication cost of updating trailP to the new location p and
deleting the tracking structure to the old location p′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 V. Kulathumani et al.

To simplify our presentation, we first describe Trail in a 2-d real plane. We then
refine the Trail protocol to suitably implement in a dense connected grid model
of a WSN. We describe this model in Section 4.

3 Trail

In this section, we use geometric ideas to design Trail for a bounded 2-d real
plane. Let C denote the center of this bounded plane.

3.1 Tracking Data Structure

We maintain a tracking data structure for each object in the network. Let P
be an object being tracked, and p denote its location on the plane. Let dpC be
the distance of p from the center C. We denote the tracking data structure for
object P as trailP . Before we formally define this tracking structure, we give a
brief overview.

Overview: If trailP is defined as a straight line from C to P , then every time
the object moves, trailP has to be updated starting from C. This would not be a
distance sensitive approach. Hence we form trailP as a set of trail segments and
update only a portion of the structure depending upon the distance moved. The
number of trail segments in trailP increases as dpC increases. Note that we do
not partition the network into a hierarchy and assign roles to specific nodes in
the network. Rather, the end points of the trail segments serve as marker points
to update the tracking structure when an object moves. The point from where
the update is started depends on the distance moved. Only, when P moves a
sufficiently large distance, trailP is updated all the way from C. We now formally
define trailP .

Definition 3 (trailP). ThetrackingdatastructureforobjectP ,trailP ,fordpC ≥ 1
is a path obtained by connecting any sequence of points (C, Nmax, ..., Nk, ..., N1, p)
by line segments, where max ≥ 1, and there exist auxiliary points c1..cmax that
satisfy the properties (P1) to (P4) below.

For brevity, let Nk be the level k vertex in trailP ; let the level k trail segment
in trailP be the segment between Nk and Nk−1 ; let Seg(x, y) be any line segment
between points x and y in the network.

– (P1): dist(ck, Nk) = 2k, (max ≥ k ≥ 1).
– (P2):Nk−1, (max ≥ k ≥ 1), lies onSeg(Nk, ck−1);Nmax lies onSeg(C, cmax).
– (P3): dist(p, ck) < 2k−b, (max ≥ k ≥ 1) and b ≥ 1 is a constant.
– (P4): max = �(log2(dist(C, cmax)))� − 1.

If (dpC = 0), trailP is C; and if (0 ≤ dpC < 1), trailP is Seg(C, p).

Observations about trailP : From the definition of trailP , we note that the
auxiliary points c1..cmax are used to mark vertices N1..Nmax of trailP . P1 and
P2 describe the relation between the auxiliary points and the vertices of trailP .
Given trailP , points c1..cmax are uniquely determined using P1 and P2. Simi-
larly given p and c1, ..cmax, trailP is uniquely determined. By property P3, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 87

(a)
Eg.1

(b) Eg.2 (c) Eg.3

Fig. 1. Examples of Trail to an Object P

maximum separation between p and any auxiliary point ck decreases exponen-
tially as k decreases from max to 1. By changing parameter b in property P3, we
can tune the rate at which the tracking structure is updated. We discuss these
refinements in Section 5. Note that we do not partition the network into a fixed
number of levels. Rather, the value of max which denotes the number of trail
segments in trailP , depends on the distance of P from C.

We now show 3 examples of the tracking structure in Fig. 1. In this figure, b =
1. Fig. 1(a) shows trailP when c3, ..c1 are collocated. When P moves away from
this location, trailP is updated and Fig. 1(b) shows an example of trailP where
c2, ..c1 are displaced from c3. In Fig. 1(b), dist(c3, c2) = 2 units, dist(c2, c1) = 1
unit, dist(p, c1) < 1 units. Moreover, N3 lies on Seg(C, c3), N2 lies on Seg(N3, c2)
and so on. In Fig. 1(c) we show an example of a zig zag trail to an object P ,
when P moves away from c3 and then moves back in the opposite direction.

3.2 Updating the Trail

We now describe a procedure to update the tracking structure when object P
moves from location p′ to p such that the properties of the tracking structure
are maintained and the cost of update is distance sensitive.

Overview: When an object moves distance d away, if the distance dist(c1, p)
is less than 1, then the trail is updated by replacing segment(N1, p

′) with
segment(N1, p). Otherwise, we find the minimal index m, along trailP such
that dist(p, cj) < 2j−b for all j such that max ≥ j ≥ m and trailP is updated
starting from Nm. In order to update trailP starting from Nm, we find new ver-
tices Nm−1...N1 and a new set of auxiliary points cm−1...c1. Let N ′

m−1...N
′
0 and

c′m−1...c
′
1 denote the old vertices and old auxiliary points respectively. Starting

from Nm, we follow a recursive procedure to update trailP . This procedure is
stated below:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 V. Kulathumani et al.

Fig. 2. Updating trailP

Update Algorithm:

1. If dist(p, c1) ≥ 1, then let m be the minimal
index on the trail such that dist(p, cj) <
2j−b for all j such that max ≥ j ≥ m.

2. k = m
3. while k > 1

(a) ck−1 = p; Now obtain Nk−1 using prop-
erty P2 as follows: the point on segment
Nk, ck−1, that is 2k−1 away from ck−1.

(b) k = k − 1
If no indices exist such that dist(ck, p) <

2k−1, then the trail is created starting from C.
This could happen if the object is new or if the
object has moved a sufficiently large distance
from its original position. In this case, max is
set to (�log2(dp)�) − 1. cmax is set to p. Nmax is marked on segment(C, p) at
distance 2max from cmax. Step 1 is executed with k = max.

Fig. 2 illustrates an update operation, when b = 1. In Fig. 2a, dist(p, p′) is 2
units. Hence update starts at N3. Initially c3, c′2, c′1 are at p′. We use the update
algorithm to determine new c2, c1 and thereby the new N2, N1. Using step (3a)
of the update algorithm, the new c2 and c1 lie at p. The vertex N2 then lies on
segment(N3, c2) and N1 lies on segment(N2, c1). In Fig. 2b, P moves further one
unit. Hence update now starts at N2. Using step (3a) of the update algorithm,
the new c1 lies at p and N1 lies on segment(N2, c1).

Lemma 1. The update algorithm for Trail yields a path that satisfies trailP .

Proof. 1. Let m be the index at which update starts. By the condition in step
1, dist(cj , p) < 2j−b for all max ≥ j ≥ m. Now, for m > j ≥ 1, cj = p.
Therefore for m > j ≥ 1, dist(cj , p) < 2j−b. Thus property P3 is satisfied.

2. Properties P2 and P1 are satisfied because m ≥ k > 1, we obtain Nk−1 as
the point on Seg(Nk, ck−1), that is 2k−1 away from ck−1.

3. max is defined for trailP , when trailP is created or updated starting from
C. When max is (re)defined for trailP , cmax is the position of the object and
max is set to (�log2(dp)�) − 1. Thus the update algorithm satisfies property
P4.

Definition 4 (Trail Stretch Factor). Given trailP to an object p, we define
the trail stretch factor for any point x on trailP as the ratio of the length along
trailP from x to p, to the Euclidean distance dist(x, p).

Lemma 2. The maximum Trail Stretch Factor for any point along trailP , de-
noted as TSp is sec(α) ∗ sec(α

2) where α = arcsin(1
2b).

Proof Sketch: We first show that the maximum Trail Stretch Factor occurs when
point Nmax..N1 lie on a logarithmic spiral with origin p and the angle between
the radius of the spiral and tangent to any point on the spiral being equal to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 89

α = arcsin(1
2b) [11]. We then use the property of logarithmic spirals that the

ratio of length along spiral from any point on the spiral to the origin over the
Euclidean distance of that point to the origin is sec(α).

Lemma 3. The length of trailP for an object P starting from a level k(0 < k ≤
max) vertex, denoted as Lk is bounded by (2k + 2k−b) ∗ TSp.

Proof Sketch: dist(ck, p) < 2k−b. Therefore, dist(Nk, p) < 2k + 2k−b. Then using
lemma 2, the result follows.

Theorem 1. The upper bound on the amortized cost of updating trailP when
object P moves distance dm(dm > 1) is 4 ∗ (2b + 1) ∗ TSp ∗ dm ∗ log(dm).

Proof. Note that in update whenever trailP is updated starting at the level k
vertex, we set ck−1 = p. P can now move a distance of 2k−1−b before another
update starting at the level k vertex. Thus, between any two successive updates
starting from a level k vertex, the object must have moved at least a distance
of 2k−1−b. The total cost to create a new path and delete the old path starting
from a level k vertex costs at most 2 ∗ Lk.

Note that over a distance dm where dm > 1 , the update can start at level
(�log2(dm)� + b + 1) vertex at most once. This is because, update starts at
level (�log2(dm)� + b + 1) vertex, only when P has moved at least dm distance.
Similarly, update can start at level (b + 1) vertex atmost dm times, update can
start at level (b + 2) vertex can at most �dm/2� times, and so on. Adding the
total cost, Theorem 1 follows.

b Trail Stretch Update Cost
1 1.2 14 ∗ dm ∗ logdm

2 1.05 20 ∗ dm ∗ logdm

> 3 Approaches 1 4 ∗ (2b + 1) ∗ dm ∗ logdm

Fig. 3. Effect of b on Update Cost

For illustration, we summarize the
Trail Stretch factor and update
costs for different values of b in
Fig. 3. We explain the significance
of the refinement of Trail by vary-
ing b in Section 5.

3.3 Basic Find Algorithm

Given trailP exists for an object P in the network, we now describe a basic find
algorithm that is initiated by object Q at point q on the plane. We use a basic
ring search algorithm to intersect trailP starting from Q in a distance sensitive
manner. We then show from the properties of the Trail tracking structure that
starting from this intersection point, the current location of P is reached in a
distance sensitive manner.

Basic find Algorithm:

1. With center q, successively draw circles of radius 20, 21, ...2�log(dqC)�−1, until
trailP is intersected.

2. If trailP is intersected, follow it to reach object P ; else follow trailP from C
(note that if object exists, trailP will start from C).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 V. Kulathumani et al.

(a) find Path (b) Farthest Find Point

Fig. 4. Basic Find Algorithm in Trail

Theorem 2. The cost of finding an object P at point p from object Q at point
q is O(df) where df is dist(p, q).

Proof. Note that as q is distance df away from p, a circle of radius 2�log(df)�

will intersect trailP . Hence the total length traveled along the circles before
intersecting trailP at point s is bounded by 2 ∗ π ∗

∑�log(df)�
j=1 2j , i.e., 8 ∗ π ∗ df .

The total cost of connecting segments between the circles is bounded by 2 ∗ df .
Now, when the trail is intersected by the circle of radius 2�log(df)�, the point

s at which the trail is intersected can be at most 3 ∗ df away from the object p.
This is illustrated in Fig. 4(b). In this figure, q is df +∇ away from p. Hence the
trail can be missed by circle of radius 2df . From lemma 3, we have that distance
along the trail from s to p is at most 3 ∗ TSp ∗ df . Thus, the cost of finding an
object P at point p from object Q at point q is O(df) where df is dist(p, q).

4 Implementing Trail in a WSN

In this section, we describe how to implement the Trail protocol in a WSN,
that is a discrete plane as opposed to a continuous plane as described in the
previous section. Trail can be implemented under any random deployment of
a WSN aided by some approximation for routing along a circle. For reasons of
exposition, in this section we describe the implementation of Trail specifically in
a WSN grid. In this model, each node is assigned some grid location x, y and is
aware of that location. We refer to unit distance as the one hop communication
distance. dist(i, j) now stands for distance between motes i and j in these units.
We also assume the existence of an underlying geographic routing protocol such
as GPSR [12], aided by an underlying neighborhood service that maintains a list
of neighbors at each mote. In the WSN grid, we assume that nodes in the network
can fail due to energy depletion or hardware faults and there can be a bounded
error in the placement of motes with respect to their ideal grid locations, thus
leading to holes in the network. However, we assume that the network may not
be partitioned; there exists a path between every pair of nodes in the network.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 91

When implementing on a WSN grid, Trail is affected by the following factors:
(1) discretization of points to nearest grid location; (2) Overhead of routing
between any two points on the grid; and (3) holes in the network. We discuss
these issues in this section.

Routing Stretch Factor: When using geographic routing to route on a grid,
the number of hops to communicate across a distance of d units will be more
than d. We measure this stretch in terms of the routing stretch factor, defined as
the ratio of the communication cost (number of transmissions) between any two
grid locations, to the euclidean distance d between two grid locations. It can be
shown that the upper bound on the routing stretch factor for the WSN unit grid
is

√
2. The routing stretch factor will decrease in the denser grids because there

are more nodes and routes will be increasingly closer to the segment between
two grid points.

4.1 Implementing find on WSN Grid

We now describe how to implement the find algorithm in the WSN grid. As seen
in Section 3, during a find, exploration is performed using circles of increasing
radii around the finder. However, in the grid model, we approximate this pro-
cedure and instead of exploring around a circle of radius r, we explore along a
square of side 2 ∗ r. The perimeter of the square spans a distance 8 ∗ r instead of
2 ∗ π ∗ r. We could use tighter approximations of the circle, but approximating
with a square is simple for a grid.

Lemma 4. The upper bound on the cost of finding an object P at point p from
object Q at point q is 38 ∗ d where d is dist(p, q).

4.2 Implementing Update on WSN Grid

We use three types of messages in the update actions. Initially, when an object is
detected at a node, it sends an explore message that travels in around the square
perimeters of increasing levels until it meets trailP or it reaches the center. Note
that if the object is updated continuously as it moves, then the explore message
will intersect the trail within a 1 hop distance. As before, the trail update is
started from the level m vertex node where m is the minimal index such that
dist(cm, p) < 2m−1 for all j such that max ≥ j ≥ m.

Starting from the level m node where update is started, a new path is created
by sending a grow message towards cm−1. Geographic routing is used to route the
message towards cm−1. On this route, the node closest to, but outside a circle of
radius 2m−1 around cm−1 is marked as Nm−1. This procedure is then repeated
at subsequent vertex motes and the path is updated. Fig. 5(b) shows how a
trail is updated in the grid model with the grid spacing set equal to the unit
communication distance. The vertex pointers N3, ...N1 are shown approximated
on the boundary of the respective circles. Also, starting from the level k node
where update is started, a clear message is used to delete the old path. We
formally state the update and find algorithms in guarded command notation that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 V. Kulathumani et al.

(a) find in a WSN grid (b) update in a WSN grid

Fig. 5. Find and Update Algorithm in a WSN grid

for reasons of space have been relegated to our anonymous technical report [11].
We also implement the algorithms in Java, which we use in Section 6, to study
the performance of Trail.

4.3 Fault-Tolerance

Due to energy depletion and faults, some nodes may fail leading to holes in
the WSN grid. A hole consists of a contiguous set of nodes that have failed in
the network. Trail uses minimal infrastructure and does not require expensive
constructions such as hierarchical partitioning and in contrast to such solutions
that are vulnerable to failures of nodes higher in the hierarchy, Trail supports
a graceful degradation in performance in the presence of node failures. As the
number of failures increase, there is only a proportional increase in find and
update costs as the tracking data structure and the find path get distorted, as
opposed to completely breaking down. We discuss the robustness of Trail under
three scenarios: during update, maintaining an existing trail and during find.

Tolerating node failures during update: A grow message is used to update
a trail starting at a level k mote and is directed towards the center of circle
k − 1. In the presence of holes, we use a right hand rule, such as in [12], in order
to route around the hole and reach the destination. As indicated in the update
algorithm for WSN grid, during routing the node closest to, but outside a circle
of radius 2k−1 around ck−1 is marked as Nk−1. Since we assume that the network
cannot be partitioned, eventually such a node will be found. (If all nodes along
the circle have failed, the network is essentially partitioned).

Maintaining an existing trail: Nodes may fail after a trail has been created.
Also, in some cases, clear messages may fail thereby not deleting an old trail. In
order to stabilize from these faulty states, we use periodic heartbeat actions along
the trail. We state the stabilizing actions in guarded command notation and
explain how they restore the invariants. For reasons of space, we have relegated
this discussion to the technical report.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 93

Tolerating failures during a find: We now describe how the find message
explores in squares of increasing levels. When a find message comes across a
hole, it is rerouted only radially outwards of the square and we do not allow
back tracking. If all nodes in the forward direction of the explore have failed,
then the level of search is incremented and routed towards a node in the next
level. Thus, in the presence of larger holes, we abandon the current level and
move to the next level, instead of routing around the hole back to the current
level of exploration. Finally, if even that fails, the destination is marked as C
and message is routed towards C. In the worst case, find may reach C.

5 Refinements to Trail

In this section, we discuss two techniques to refine the basic Trail network pro-
tocol: (1) tuning how often to update a Trail tracking structure, and (2) tuning
the shape of a Trail tracking structure.

5.1 Tightness of Trail Tracking Structure

The frequency at which trailP is updated depends on parameter constant b in
property P3 of trailP . As seen in Section 3, for values of b > 1, trailP is updated
more and more frequently, hence leading to larger update costs. However, trailP
becomes tighter and increasingly tends to a straight line with the trail stretch
factor approaching 1. We exploit this tightness of trailp to optimize the find
strategy.

Fig. 6. Optimized find

The intuition behind this optimization is
that since the trail to any object P origi-
nates at C, the angle formed by p with C and
the higher level vertices is small and bounded.
Hence as the levels of explorations increase in
find, we can progressively decrease the size of
exploration from full circles to cones of smaller
angles. As an example, when b = 2, we prove
that at the three highest levels of search, a
conical pattern of search as shown in Fig. 6 is
sufficient to guarantee distance sensitivity. In
Fig. 6, b = 2, the object q is at distance 48

units from C. The levels of exploration are in the range 0..4. Exploration is
along circles until level 1 and then along cones at levels 2 to 4. By increasing
b, the angles formed by P with C and vertices Nmax..N1, start getting smaller.
Therefore as b increases, the number of levels at which this optimization can be
performed increases [11].

Impact of the Optimization: When using the optimized find strategy, the
upper bound on find(P, Q) costs remains the same when dpq is small. However,
we exploit the fact that trails to objects converge at C and therefore decrease
the size of exploration at higher levels of search. Hence the upper bound costs for
find decrease when dpq increases. In other words, when dpq is large, we mitigate

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 V. Kulathumani et al.

the cost of Q having to explore at the lower levels. As an example, when b = 2
we show that the upper bound find costs decrease from 38 ∗ d to 14 ∗ d as dpq

increases [11]. The optimization of find at higher levels is thus significant in that
it yields: (1) smaller upper bounds for objects that are far away from the finder;
and (2) lower average cost of find(p, q) over all possible locations of q and p.

We note that there are limits to tuning the frequency of updates, because for
extreme values of b distance sensitivity may be violated. For example, for large
values of b, that cause dist(p, ck) < y where y is a constant we end up with having
to update the entire trailP when an object moves only a constant distance y.
Similarly, for values of b < 0, the Trail Stretch Factor becomes unbounded with
respect to distance from an object. Thus an object could be only δ away from
a point on trailP , yet the distance along trailP from this point to the p could
travel across the network.

5.2 Modifying Trail Segments

Fig. 7. Find Centric Trail

A second refinement to Trail is by varying
the shape of the tracking structure by gener-
alizing property P2 of trailP . Instead of trail
segment k between vertex Nk and Nk−1 be-
ing a straight line, we relax the requirement
on trail segment k to be of length at most
(2∗π+1)∗2k. By publishing information of P
along more points, the find path can be more
straight towards C. An extreme case is when
trail segment k is a full circle of radius 2k cen-
tered at ck and segment(Nk, Nk−1). We call
this variation of Trail the Find-centric Trail.

Find-Centric Trail: In this refinement, the find procedure eschews exploring
the circles (thus traversing only straight line segments) at the expense of the
update procedure doing more work. This alternative data structure is used when
objects are static or when object updates are less frequent than that of find
queries in a system. Let trailP for object P consist of segments connecting
C, Nmax, .., N1, p as described before and, additionally, let all points on the circles
Circk of center ck and radius 2k contain pointers to their respective centers,
where max ≥ k > 0.

Starting at q, the find path now is a straight line towards the center. If a circle
with information about object P is intersected then, starting from this point, a
line is drawn towards the center of the circle. Upon intersecting the immediate
inner circle (if there is one), information about its respective center is found,
with which a line is drawn to this center. Object P is reached by following this
procedure recursively.

Lemma 5. In Find Centric Trail, when b = 1, the total cost of finding an object
P at point p from object Q at point q is 14 ∗ df where df = dist(p, q).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 95

6 Performance Evaluation

In this section, we evaluate the performance of Trail using simulations in JProwler
[13]. The goals of our simulation are: (1) to study the effect of routing stretch and
discretization errors on the trail stretch factor, (2) to study the effect of uniform
node failures on the performance of Trail and (3) to compare the average costs for
find and update, as opposed to the upper bounds we derived earlier. Our simu-
lation involves a 90 by 90 Mica2 mote network arranged on a grid. We implement
geographic routing on a grid to route messages in the network. In the presence of
failures we use a left hand rule to route around the failure [12]. We assume an un-
derlying link maintenance layer because of which the list of up neighbors is known
at each node.

Routing Stretch: We first study the effect of holes in the network on the
routing stretch factor. We simulate two different density models and inject node
failures from 1% to 20% that are uniformly distributed across the network. We
consider a grid separation of unit distance and 0.5 unit distance. We randomly
select any two points in the network and measure the average routing stretch
factor to route between 300 such pairs. From Fig. 8(a), we see that the routing
stretch factor is a small constant factor over the actual distance between two
nodes. The stretch factor decreases as expected when density increases. As the
fault percentages increase, the number of disconnections in the network increase.
The average route stretch factors shown are for the instances when the network
is actually connected, and in these instances the average stretch factor does not
increase significantly.

(a) Routing Stretch Factor (b) Disconnection %

Fig. 8. Routing Stretch Factor in a Grid Network

Performance of Update Operations: We determine the number of messages
exchanged for object updates over different distances when an object moves
continuously in the network. We consider the unit grid separation, where each
node has at most 4 communication neighbors. The number of neighbors may
be lesser due to failures. We calculate the amortized cost by moving an object
in different directions and then observing the cumulative number of messages
exchanged up to each distance from the original position to update the tracking

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 V. Kulathumani et al.

(a) Trail Update Cost (Amortized) (b) Trail Stretch Factors

Fig. 9. Trail Update Costs and Trail Stretch

structure. The results are shown in Fig. 9(a). The jumps visible at distances 4 and
8 show the logd factor in the amortized cost. At these distances, the updates have
to be propagated to a higher level. We also study the effect of uniform failures in
the network on the increase in update costs. We consider fault percentages upto
20. We see from the figure that even with failures the average communication
cost increases log linearly. This indicates that the failures are handled locally.

Trail Stretch Factor: From Section 3, we note that in the continuous model,
for an object P at distance dpC from C, trailP is less than 1.2 × dpC . We now
study the effect of routing overhead and the discretization factor on the length
of the tracking structure that is created. We measure the trail length in terms
of the number of hops along the structure. Fig. 9(b) shows the average ratio of
distance from C to the length of the trail during updates over different distances
from the original position. The parameter b = 1 in these simulations.

When the trail is first created, the trail stretch is equal to the routing stretch
from C to the original location. In the absence of failures, we notice that the trail
stretch increases to 1.4 at updates of smaller distances and then starts decreasing.
This can be explained by the fact the trail for an object starts bending more uni-
formly when the update is over a large distance. Even in the presence of failures,
the trail stretch factor increases to only about 1.6 times the actual distance.

Fig. 10. Average find Cost

Performance of find: We now compare the
average find costs with upper bounds derived.
We fix the finder at distance 40 units from C. We
vary the distance of object being found from 2 to
16. We evaluate using the basic find algorithm
with b = 1 and the optimized find algorithm dis-
cussed in Section 5 using b = 2. In the optimized
find, at levels 2 to 4, we do not explore the entire
circle.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 97

The results are shown in Fig. 10; the upper bound 38 ∗ d is indicated using
dotted lines and we see that the number of messages exchanged during find
operations are significantly lower. The jumps at distances 3, 5 and 9 are due to
increase in levels of exploration at these distances.

7 Related Work

In this section, we discuss related work and also compare the performance of
Trail with other protocols designed for distance sensitive tracking and querying.

Tracking: As mentioned earlier, mobile object tracking has received significant
attention [3,4,6] and we have focused our attention on WSN support for tracking.
Some network tracking services [2] have nonlocal updates, where update cost to a
tracking structure may depend on the network size rather than distance moved.
There are also solutions such as [3, 4, 1] that provide distance sensitive updates
and location.

Locality Aware Location Services (LLS) [1] is a distance sensitive location ser-
vice designed for mobile adhoc networks. In LLS, the network is partitioned into
hierarchies and object information is published in a spiral structure at well known
locations around the object, thus resulting in larger update costs whenever an
object moves. The upper bound on the update cost in LLS is 128 ∗ dm ∗ logdm,
where dm is the distance an object moves, as opposed to the 14∗dm ∗ logdm cost
in Trail; the upper bounds on the find cost are almost equal. Moreover, as seen
in Section 5, we can further reduce the upper bound on the find cost at higher
levels in Trail.

Fig. 11. Trail: Analytical Comparison

The Stalk protocol [4] uses hier-
archical partitioning of the network
to track objects in a distance sensi-
tive manner. The hierarchical parti-
tioning can be created with different
dilation factors (r ≥ 3). For r = 3
and 8 neighbors at each level, at al-
most equal find costs, Stalk has an
upper bound update cost of 96∗d∗ logd and this increase occurs because of hav-
ing to query neighbors at increasing levels of the partition in order to establish
lateral links for distance sensitivity [4].

Both Stalk and LLS use a partitioning of the network into hierarchical clusters
which can be complex to implement in a WSN, whereas Trail is cluster-free.
Moreover, in Stalk, the length of the tracking structure can span the entire
network as the object keeps moving and, in LLS, the information about each
object is published in a spiral structure across the network. In comparison, Trail
maintains a tighter tracking structure (i.e., with more direct paths to the center)
and is thus more efficient and locally fault-tolerant.

In [3], a hierarchy of regional directories is constructed and the commu-
nication cost of a find for an object df away is O(df ∗ log2N) and that of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 V. Kulathumani et al.

a move of distance dm is O(dm ∗ logD ∗ logN) (where N is the number of
nodes and D is the network diameter). A topology change, such as a node
failure, however, necessitates a global reset of the system since the regional
directories depend on a non-local clustering program that constructs sparse
covers.

Querying and storage: Querying for events of interest in WSNs has also
received significant attention [14, 15, 16] and some of them focus on distance
sensitive querying. We note that Trail, specifically the Find-centric approach
can also be used in the context of static events.

Distance Sensitive Information Brokerage [17] protocol performs a hierarchi-
cal clustering of the network and information about an event is published to
neighboring clusters at each level. DSIB has a querying cost of 4 ∗ d to reach
information about an event at distance d away. Using Find-centric Trail we can
query information about a static event at a cost of 2∗d. We also note that when
events are static, the publish strategy can be further optimized and we study
this in a recent work.

Geographic Hash tables [15] is a lightweight solution for the in-network-
querying problem of static events. The basic GHT is not distance sensitive since
it can hash the event information to a broker that is far away from a subscriber.
The distance sensitivity problem of GHT can be alleviated to an extent by using
geographically bounded hash functions at increasing levels of a hierarchical par-
titioning as used in DIFS protocol. Still, attempting such a solution suffers from
a multi-level partitioning problem: a query event pair nearby in the network
might be arbitrarily far away in the hierarchy. However, we do note that GHT
provides load balancing across the network, especially when the types of events
are known and this is not the goal of Trail.

In [16], a balanced push-pull strategy is proposed that depends on the query
frequency and event frequency; given a required query cost, the advertise op-
eration is tuned to do as much work as required to satisfy the querying cost.
In contrast, Trail assumes that query rates depend on each subscriber (and po-
tentially on the relative locations of the publisher and subscriber), and it also
provides distance sensitivity during find and move operations, which is not a
goal of [16]. In directed diffusion [14], a tree of paths is created from all objects
of interest to the tracker. All these paths are updated when any of the objects
move. Also, a controller initiated change in assignment would require changing
the paths. By way of contrast, in Trail, we impose a fixed tracking structure,
and tracks to all objects are rooted at one point. Thus, updates to the structure
are local and any object can find the state of any other object by following the
same tracking structure. Rumor routing [18] is a probabilistic algorithm to pro-
vide query times proportional to distance; the goal of this work is not to prove
a deterministic upper bound. Moreover, its algorithm does not describe how to
update existing tracks locally and yet retain distance sensitive query time when
objects move.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Trail: A Distance Sensitive WSN Service 99

8 Conclusions and Future Work

We have presented Trail, a family of protocols for distance sensitive distributed
object tracking in WSNs. Trail avoids the need for hierarchical partitioning by
determining anchors for the tracking paths on-the-fly, and is more efficient than
other hierarchy based solutions for tracking objects: it allows 7 times lower up-
dates costs at almost equal find costs and can tolerate faults more locally as
well.

Importantly, Trail maintains tracks from object locations to only one well-
known point, the center of the network, which we claim is necessary to minimize
the total track length for objects. Well-known points are necessary for distance
sensitive tracking and, as we prove in the associated technical report of this
paper [11], multiple well-known points cannot yield shorter total track length
of objects. Moreover, since its tracks are almost straight to the center with a
stretch factor close to 1, Trail tends to achieve the lower bound on the total
track length. By using a tight tracking structure, Trail also able to decrease the
upper bound find costs at larger distances and thereby decrease the average
find cost across the network.

We have shown that refinements of the basic Trail protocol are well suited
for different network sizes and query frequency settings. We have validated the
distance sensitivity and fault tolerance properties of Trail in a simulation of 90
by 90 network using JProwler. We have also succesfully implemented a Trail
protocol in the context of a pursuer evader application for a medium size (over
100 node) mote network.

Trail operates in an environment where objects can generate updates and
queries asynchronously. We note that in such an environment, due to the oc-
currence of collisions, there can be an increase in the message complexity for
querying and updates especially when the objects are densely located in the net-
work. As future work, we are considering a push version of the network tracking
service where snapshots of objects are published to subscribers in a distance sen-
sitive manner, both in time and information, in order to increase the reliability
and energy efficiency of the service when the density of objects in the network
is high.

References

1. I. Abraham, D. Dolev, and D. Malkhi. LLS: A locality aware location service for
mobile ad hoc networks. DIALM-POMC, 2004.

2. S. Dolev, D. Pradhan, and J. Welch. Modified tree structure for location manage-
ment in mobile environments. In INFOCOM, pages 530–537, 1995.

3. B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the Asso-
cisation for Computing Machinery, 42:1021–1058, 1995.

4. M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hierarchy-based fault-local
stabilizing algorithm for tracking in sensor networks. In OPODIS, 2004.

5. A. Arora, P. Dutta, and S. Bapat et al. A line in the sand: A wireless sensor network
for target detection, classification, and tracking. Computer Networks, Special Issue
on Military Communications Systems and Technologies, 46(5):605–634, July 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 V. Kulathumani et al.

6. T. He, S. Krishnamurthy, and J. Stankovic et al. Vigilnet:an integrated sensor
network system for energy-efficient surveillance. ACM Transactions on Sensor
Networks, 2004.

7. A. Arora and R. Ramnath et al. Exscal: Elements of an extreme wireless sen-
sor network”. In The 11th International Conference on Embedded and Real-Time
Computing Systems and Applications, 2004.

8. H. Cao, E. Ertin, and V. Kulathumani et al. Differential games in large scale sensor
actuator networks. In Information Processing in Sensor Networks (IPSN), 2006.

9. B. Sinopoli and C. Sharp et al. Distributed control applications within sensor
networks. In Proceedings of the IEEE, volume 91, pages 1235–46, Aug 2003.

10. J. Shin, L. Guibas, and F. Zhao. A distributed algorithm for managing multi-target
indentities in wireless ad hoc networks. In IPSN, 2003.

11. V. Kulathumani, A. Arora, and M. Demirbas. Trail: A distance sensitive WSN
service for distributed object tracking. Technical Report OSU-CISRC-7/06-TR67,
The Ohio State University, 2006.

12. B. Karp and H. T. Kung. Greedy perimeter stateless routing for wireless networks.
In Proceedings of MobiCom, 2000.

13. Vanderbilt University. JProwler. http://www.isis.vanderbilt.edu/Projects/
nest/jprowler/index.html.

14. C. Intanogonwiwat and R. Govindan et al. Directed diffusion for wireless sensor
networking. IEEE Transactions on Networking, 11(1):2–16, 2003.

15. S. Ratnasamy and B. Karp et al. GHT: A geographic hash table for data-centric
storage. In Wireless Sensor Networks and Applications (WSNA), 2002.

16. X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: Balancing push and
pull for discovery in large-scale sensor networks. In ACM Sensys, 2004.

17. S. Funke and L. Guibas et al. Distance sensitive information brokerage in sensor
networks. In DCOSS, 2006.

18. D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In
ICDCS, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.isis.vanderbilt.edu/Projects/nest/jprowler/index.html
http://www.isis.vanderbilt.edu/Projects/nest/jprowler/index.html

Towards Energy-Efficient Skyline Monitoring in
Wireless Sensor Networks�

Hekang Chen1, Shuigeng Zhou1,2, and Jihong Guan3

1 Dept. of Computer Sci. and Eng., Fudan University, Shanghai 200433, China
2 Shanghai Key Lab of Intelligent Information Processing, Shanghai 200433, China

{hkchen, sgzhou}@fudan.edu.cn
3 Dept. of Computer Sci. and Tech., Tongji University, Shanghai 200092, China

jhguan@mail.tongji.edu.cn

Abstract. Skyline computation is a hot topic in database community
due to its promising application in multi-criteria decision making. In
sensor network application scenarios, skyline is still useful and important
in environment monitoring, industry control, etc. To support energy-
efficient skyline monitoring in sensor networks, this paper first presents
a näıve approach as baseline, and then proposes an advanced approach
that employs hierarchical thresholds at the nodes. The threshold-based
approach focuses on minimizing the transmission traffic in the network to
save the energy consumption. Finally, we conduct extensive experiments
to evaluate the proposed approaches on simulated data sets, and compare
the threshold-based approach with the näıve approach. Experimental
results show that the proposed threshold-based approach outperforms
the näıve approach substantially in energy saving.

1 Introduction

Wireless Sensor Networks (WSN) [1] have become a fundamental research sub-
ject due to its wide applications such as environment monitoring, industry con-
trol, civilian and military surveillance, etc. In a WSN, a large number of sensor
nodes self-organize and collaborate with each other to send the sensed data to
the base station, from which users retrieve useful information. To support data
query processing in WSNs, some experimental systems have been developed, in-
cluding TinyDB [2], Cougar [3], etc. Due to the hardware constraints (e.g. low
CPU, memory capability and power supply), these systems only support some
basic database operators such as selection, projection, groupby. As the develop-
ment of hardware techniques and the deployment of advanced WSN applications,
it is urgent for the WSN systems to support more complicated queries, such as
join [4], outliers [5], complex aggregations, and skyline [6,7,8].

Skyline operator has received much concern in database community in re-
cent years because of its important use of multi-criteria decision making. Point
� This work was supported by National Natural Science Foundation under grants

60373019, 60573183 and 90612007, and the Shuguang Scholar Program of Shanghai
Municipal Education Committee.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 101–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 H. Chen, S. Zhou, and J. Guan

dist

1/
dp

pi
pk

pj

(a) Skyline at time t1
dist

1/
dp

pi
pk

pj

(b) Skyline at time t2

Fig. 1. Skylines in WSN pollution monitoring application (� indicates skyline point)

p dominates another point q only if p is better (according to a certain user
defined preference) than q on at least one dimension and not worse than q on
the other dimensions. A skyline query on a d -dimensional database returns a
set of points that are not dominated by any other point. Skyline operator has
been extensively studied over centralized databases and many approaches have
been proposed such as BNL [6], D&C [6], NN [7], BBS [8] etc. Motivated by the
requirement of the online web applications, current research concern of skyline
operator is focusing on more complex and dynamic contexts, such as distributed
databases [9,10,11,12] and data stream [13].

Imagine the following application scenario. We use sensor network to monitor
the pollution situation in a large-scale area. The sensor nodes are deployed at the
potential pollution sources (e.g. nuclear electricity plants and chemical factories).
For simplicity, a sensor node corresponds to a potential pollution source. Two
values are used to represent each sensor: the degree of pollution (simply dp) at the
sensed point that measures how serious the pollution situation is at that point,
and the distance (simply dist) from the sensor point to the nearest resident area.
Thus a sensor ui is equal to a 2-dimensional point pi(dpi, disti). In such a context,
what we concern most are those sensed points that have smaller dist values (i.e.,
nearer to the resident points) and larger dp values (i.e., more seriously polluted).
This is actually a skyline query to the sensor network.

We illustrate the skyline at time t1 of the application mentioned above as in
Fig. 1(a). Here the horizontal axis and vertical axis correspond to dist and 1/dp
(the inversion of pollution degree dp) values respectively. Point pk is not a skyline
point because it is dominated by pi and pj, i.e., pk have larger dist and 1/dp (or
smaller dp) values than pi and pj. Points pi and pj are skyline points because
they are not dominated by each other and any other point. pi has smaller dist
than pj, while pj has smaller 1/dp (or larger dp) than pi. Note that the skyline
changes from time to time, thus queries in WSN should be continuous. At time
t2, the skyline is illustrated as in Fig. 1(b). With such skyline processing facility
to the sensor network, we can monitor in real time all the most dangerous sites
in terms of pollution degree and the distance to the nearest resident area.

In this paper, we formally address the problem of continuous skyline mon-
itoring in sensor networks. To the best of our knowledge, this is the first of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 103

such work. We aim to minimize the transmission traffic of the entire network,
which dominates the energy consumption [14]. Two approaches: näıve approach
and hierarchical threshold-based approach are proposed. In the näıve approach
proposed as baseline, each node actively reports to its parent the local skyline
points that are evaluated based on the local points and points from its subtree.
Finally, root computes the skyline after receiving reports from all its children.

The hierarchical threshold-based approach exploits the temporal correlation of
the nodes. Note that the sensed data by the same node in two consecutive rounds
does not deviate from each other obviously. According to this observation, skyline
computation can be efficiently achieved by setting hierarchical thresholds at the
nodes. We first describe the basic design of hierarchical threshold-based approach
that consists of two phases: up report and down query. In the first phase, each
node computes the local skyline among the points from itself and its children
and then reports the points not dominated by the local threshold to its parent.
The root node will obtain the reported points P with high probability being
included in the skyline. The second phase is to issue a query by the root node to
fetch the final skyline. The query is only sent to the nodes whose thresholds are
not dominated by any point in P . By setting thresholds, both phases are able to
suppress an amount of unnecessary transmissions. Based on this basic design, we
further propose sophisticated MinMax-Threshold approach (simply MINMAX),
which greatly cuts down the cost of the second phase by minimizing the size of
the query message. MINMAX also deals with the issue of threshold maintenance
in accordance with ever-changing data.

Extensive simulated experiments are conducted to evaluate both the näıve
approach and MINMAX in terms of the average energy consumption per node.
Results show that MINMAX outperforms the näıve approach significantly under
all tested situations.

The rest of this paper is organized as follows. Section 2 surveys the related
work. Section 3 formally states the skyline computation problem. Section 4
presents approaches to in-network skyline computation. Section 5 reports exper-
imental evaluation of the proposed approaches. Section 6 offers the conclusion.

2 Related Work

This section reviews the related work on both skyline operator in database and
data processing in sensor networks.

2.1 Skyline Operator in Database

Skyline operator [6] has received much concern in database field. Both centralized
and distributed algorithms have been proposed in the literature.

Centralized Algorithms. [6] proposes two centralized algorithms, namely Block
Nested Loops (BNL) and Divide-and-Conquer (D&C). BNL compares each point
with a list of skyline candidates kept in the main memory. Dominated points are
pruned after comparison. D&C first divides the data set into several partitions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 H. Chen, S. Zhou, and J. Guan

that can fit into memory. Skyline points for each partition are then computed,
and the final skyline can be obtained by merging these skyline points. NN [7]
and BBS [8] are index-based algorithms. NN recursively searches for the nearest
neighbor in the current region (full data space at first) and divides the region
into smaller subregions. The nearest neighbor can be immediately output as
it must be a skyline point. BBS [8] is known as the best centralized skyline
algorithm up to now. It only traverses the R-tree once and processes the entries
in ascending order of their minimum distances to the origin of the data space.
Similar to our work, Lin et al. [13] address continuous skyline monitoring on
data streams. The main idea is to map dominance relationships of the incoming
points to an interval tree, on which stabbing query is executed. However, we
focus on the sensor network scenario. Thus, the essential task is to save the
energy consumption of the network.

Distributed Algorithms. W. Balke et al. [9,10] propose the first distributed
skyline algorithm, in which a d-dimensional database is vertically partitioned
into d subsets. The algorithm accesses all subsets via round-robin strategy until
obtaining a point with values on all dimensions fetched. The points that have
been partially obtained are skyline candidates whereas the other points can be
pruned as they cannot be qualified to be skyline points. Thus, the remaining
steps are to access the subsets to fill in the blank values of each incomplete point
and find the skyline points after comparisons between each pair of points. [11]
addresses skyline queries processing in P2P systems. Dealing with the peculiar-
ities of P2P systems (e.g. dynamics and limited knowledge), this paper focuses
on minimizing the number of queried peers and pruning query paths that are not
likely to lead to peers possessing relevant data. Our work differs from the sky-
line computation on distributed databases because senor networks are dynamic
network environment and skyline computation is continuous.

2.2 Data Processing in Sensor Networks

Data processing is a key issue in WSN. Due to its application-oriented character-
istics, we classify the applications into two types: entire-network data collection
and partial-network data collection.

Entire-Network Data Collection. The applications of this type need to keep in
database the sensed data from all nodes without aggregation for later analysis.
TinyDB [2] and Gougar [3] support data gathering of entire network by setting
an empty WHERE clause. CONCH (CONstraint CHaining) [15], focusing on
one-dimensional data collection, monitors the network by tracking the value up-
dating of the nodes and edges. Reports of these monitored nodes and edges can
reconstruct the values of all nodes. [16] addresses the problem of approximate
multi-dimensional data monitoring. The data of each node is modeled as an
N × M matrix, in which N is dimensionality and M is the number of recorded
values on each dimension. The algorithm conjoins the rows of the matrix and
extracts a piece of values called base signal to approximate other pieces via
linear regression. [17] exploits both intra-node and inter-node data correlation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 105

and proposes Distributed Regression algorithm, which is formalized to be a set
of linear equations and can be solved by Gaussian Elimination.

Partial-Network Data Collection. This kind of applications are only interested
in the data from some nodes. In industrial applications, for example, reporting
values that exceed the threshold just suffice for manufacture environment moni-
toring. TinyDB and Cougar also support partial-network reports by designating
query conditions. [18,19] address continuous monitoring of the maximum values.
[18] stores at each node a value range that is also kept at the root. To find the
maximum value, the root queries each node in descending order of the upper
bound until the upper bounds of the remaining nodes are below the current
maximum value. [19] sets hierarchical thresholds at the nodes, which is simi-
lar to our approaches. The threshold of each node should be smaller than that
of its parent. The processing consists of two steps: node-initiated reporting and
root-initiated querying. In the first step, each node reports its value if it exceeds
the threshold. In the second step, the root queries the nodes whose thresholds
are larger than current maximum value. [5] addresses in-network outlier detec-
tion in sensor networks and proposes an algorithm that works in-network with
communication cost proportional to the outcome.

In this paper, we combine the skyline computation problem with the sensor
network application context, which leads to a new unsolved problem. The cur-
rent data processing methods in sensor networks cannot be applied to skyline
computation. Thus, new solutions to this problem are expected.

3 Problem Statement and Preliminaries

In a sensor network containing n fixed-location sensor nodes, each sensor node
collects a single data point at a time interval (we call it round in the rest of
this paper). A sensed point contains several attributes such as temperature,
humidity, pressure, etc. In every round, each node ui can be regarded as a multi-
dimensional point pi = (pi[1], pi[2], ..., pi[d]), where d is the number of attributes
or dimensionality. As a result, the entire sensor network forms a set of points.
The skyline query is a continuous query, which returns the skyline points that
are not dominated by any other point in every round1.

The base station, point collector of the network, has full computing capabili-
ties. All sensor nodes can communicate with the base station via one or multiple
hops to report their sensed points. In most cases, the entire network is deployed
as a tree-based infrastructure rooted at the base station, so that messages of
each node are routed via its ancestors to root. Our goal is to minimize the total
energy consumption of entire network, which can be simplified to measure the
communication cost since it dominates the total energy consumption [14]. Gen-
erally, transmitting a message with k bytes by MICA2 [20] costs σt + δtk, where
σt = 0.645J and δt = 0.0144J . Receiving cost is defined similarly with σr and
δr being 60% less than σt and δt respectively. According to the above formulas,

1 Assume that each round is long enough to finish the skyline computation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 H. Chen, S. Zhou, and J. Guan

the main design of approaches should focus on minimizing the number and size
of transmission messages.

Table 1 lists the notation used in the rest of the paper.

Table 1. Notation

Symbol Description
pi The point of node ui in the current round

pi(j) The point of node ui in the jth round
P A set of points
τi The threshold of node ui

τi(j) The threshold of node ui in the jth round
LSi The local skyline of node ui

pi ≺ pj Point pj is dominated by point pi

pi ≺ P Each point in P is dominated by pi

pi � pj pj is dominated by or equals to pi

P � pj pj is dominated by or equals to at least one point in P

4 In-Network Continuous Skyline Computation

This section presents approaches to in-network continuous skyline computa-
tion: the näıve approach and the hierarchical threshold-based approach. We first
present the näıve approach as baseline. Then, we describe basic design of hi-
erarchical threshold-based approach and prove its correctness, based on which
we propose the MINMAX approach by introducing the MinMax operator that
is used to set and maintain thresholds. At the end of this section, we fucus on
dealing with network failures caused by the dynamic environment.

4.1 Näıve Approach

Näıve approach to skyline computation is to send points of all nodes to root
so that root just computes skyline among these points. However, if each report
forms a message and is routed individually without aggregation, a large amount
of messages will be produced, resulting in massive collisions and retransmissions.
Fortunately, a tree-based infrastructure can easily deal with this problem. Each
node does not issue reports until receiving all points from its children so that it
can combine points into one message. In this case, both the volume of messages
and the number of collisions are reduced. Note that all the points in the network
should be reported. However, this is not necessary because most points are not
skyline points and can be pruned as early as possible during routing. Thus, a
straightforward optimization is for each internal node to compute local skyline
(LS) and prune the dominated points, instead of processing immediate combi-
nation. Obviously, it can reduce the size of message, only including LS. Based
on this optimization, we formally present our näıve approach as follows.

In each round, the leaf nodes first report their collected points to their parents.
Each parent node then collects its own point and the points from its children,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 107

computes the LS among these points and reports the LS to its parent. This
process continues on each internal node until the root receives all reports from
its children. Finally, the root computes the final skyline and returns the result
to the users.

4.2 Basic Design of Hierarchical Threshold-Based Approach

Näıve approach prunes dominated points at internal nodes and thus reduces
message size. However, every node in the network still has to report its point
or LS to its parent no matter whether they are final skyline points or not. If
a node can know that its collected points will be dominated at some ancestor,
then its report can be suppressed. Obverse that the points sensed at each node
between two consecutive rounds will not deviate much from each other. We
call this property temporal data correlation. It implicates that a skyline node in
the previous round belongs to the current-round skyline at a high probability.
Meanwhile, most of the non-skyline nodes will still be dominated this round.
Temporal data correlation property of sensor network motivates our hierarchical
threshold-based approach.

In hierarchical threshold-based approach, every node installs a threshold that
is a d-dimensional point, with the same dimensionality as sensed points. Our
approach works when hierarchical thresholds are set up in the network, which
follow Rule 1 and Rule 2.

Rule 1. The threshold of each node ui should be dominated by or equal to that
of its parent up, that is τp � τi.

Rule 2. Each node ui also maintains the thresholds of its children besides the
local threshold τi.

The meaning of Rule 1 is simple to understand as it represents hierarchy. The
second rule is to reduce cost as you will see later in this subsection. The threshold
setting is quite related to the sensed points, which will be described in detail
in the next subsection. In this subsection, we focus on skyline computation in a
network that has been set up with hierarchical thresholds.

The hierarchical threshold-based approach includes two phases: up report and
down query. In the first phase, each node reports the points not dominated by
its threshold. After pruning an amount of points by local thresholds, root node
thus obtains the reported points with high probability to be skyline. However,
there may still exists some skyline points that are left in the network, thus the
second phase is to fetch the final skyline by querying the nodes whose thresholds
are not dominated by the points gotten in the first phase.

Up Report. The progress starts from the bottom to the top of the tree, in
which each node reports upward the points not dominated by its threshold.

Leaf nodes: Only if pi is not dominated by τi, ui reports pi to its parent.
Internal nodes: Node ui collects its own point and the reported points from

its children, and then computes LSi among them. Those dominated points are
pruned since they cannot be in the final skyline. Finally, node ui reports to its

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 H. Chen, S. Zhou, and J. Guan

parent the points that are not dominated by τi, meanwhile stores the remaining
points (termed non-reported points) in its local memory for the second phase
use.

Down Query. This phase is to obtain all skyline points. Root ur first computes
LSr among its own point and the reported points. Then, it issues a query con-
taining LSr to fetch all possible points that may be included in the final skyline.
This can be efficiently implemented with hierarchical thresholds following Rule
1 and Rule 2. Root ur sends the query to each child ui that satisfies LSr � τi.
Note that if LSr � τi, the subtree rooted at ui can discard the query since there
cannot exist any point qualified to be a skyline point.

Internal nodes: Once node ui receives query LSp from its parent up, it com-
putes LSi among LSp and non-reported points. Then ui sends LSi to each of its
children uj that satisfies LSi � τj and waits for the reply with new points not
dominated by LSi. After all children have replied, ui updates the local skyline
points. Note that the local skyline points will no longer be updated in the cur-
rent round, thus we title it final local skyline, simply FLS. Finally, ui replies its
parent up with new points Preply = {p|p ∈ FLSi ∩ ¬p ∈ LSp}. If ui is the root
node, then FLSi is just the final skyline.

Leaf nodes: If node ui has reported pi in the first phase or satisfies LSp ≺ pi,
it reports nothing. Otherwise, it reports pi.

Lemma 1. Hierarchical thresholds can guarantee the basic approach obtain cor-
rect skyline.

Proof. Suppose the real final skyline is denoted as Skyline and the obtained
skyline by basic hierarchical threshold-based approach is denoted as Skyline′.

We first prove Skyline ⊆ Skyline′, that is ∀pi ∈ Skyline, pi ∈ Skyline′. We
denote Pre(ui) as a set of nodes that contain ui and its ancestors. If ∀ua ∈
Pre(ui), τa ⊀ pi, then pi will be reported to root in the first phase. In this case,
it will finally be included in Skyline′. If ∃ua satisfying τa ≺ pi, then pi will not
reach root at the end of the first phase. In the second phase, root will issue a
query down. Due to Rule 1 of hierarchical thresholds and query ⊀ pi, ∀u′

a ∈
Pre(ua) query ⊀ τ ′

a. Thus, ui will be queried and report pi. As a result, pi will
be contained in the final skyline.

Now that Skyline ⊆ Skyline′, it is certainly satisfied that Skyline=Skyline′,
because if there is a point within Skyline′ but not in Skyline, it must be domi-
nated by some other point. Otherwise, Skyline is not correct. �

The correctness of basic approach is guaranteed by Lemma 1. It is also of effi-
ciency by suppressing unnecessary transmissions of both phases. Fig. 2 illustrates
the processing of these two phases. Fig. 2(a) shows the sensed points and the
thresholds of the current round. Nodes u3, u5 and u6 send reports in the first
phase because they are not dominated by thresholds. Note that p6 is pruned by
p5 at node u3. Thus, only p3 and p5 reach the root as in Fig. 2(b). Fig. 2(c)
and Fig. 2(d) show the second phase. The root node issues a query containing
p3 and p5 to its child u1. Node u2, however, is not queried since its threshold is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 109

0

3

21

5 6 7

4

T7=(25, 30)
P7=(30, 40)

T6=(30, 35)
P6=(25, 45)

T5=(25, 35)
P5=(20, 45)

T3=(22, 33)
P3=(32, 30)

T1=(21, 31)
P1=(35, 30)

P0=(33, 30)

T2=(42, 45)
P2=(45, 45)

T4=(45, 50)
P4=(45, 55)

(a)

0

3

21

5 6 7

4

T7=(25, 30)
P7=(30, 40)

T6=(30, 35)T5=(25, 35)

T3=(22, 33)

T1=(21, 31)

P3=(32, 30), P5=(20, 45)

T2=(42, 45)
P2=(45, 45)

T4=(45, 50)
P4=(45, 55)

(b)

0

3

21

5 6 7

4

T7=(25, 30)
P7=(30, 40)

T6=(30, 35)T5=(25, 35)

T3=(22, 33)

T1=(21, 31)

P3=(32, 30), P5=(20, 45)

T2=(42, 45)
P2=(45, 45)

T4=(45, 50)
P4=(45, 55)

(c)

0

3

21

5 6 7

4

T7=(25, 30)T6=(30, 35)T5=(25, 35)

T3=(22, 33)

T1=(21, 31)

P3=(32, 30), P5=(20, 45), P7=(30, 40)

T2=(42, 45)
P2=(45, 45)

T4=(45, 50)
P4=(45, 55)

(d)

Fig. 2. An example of the basic approach

dominated by p3. The query is finally sent to u7. Since p7 is not dominated by
the query, it must be reported. Ultimately, the current-round skyline includes
p3, p4, and p7. Notice that during both phases, node u2 and u4 do not need to
transmit any point.

4.3 MINMAX

The previous subsection presents the basic hierarchical threshold-based approach
to compute single-round skyline. Note that the approach only works when it
is paired with the method of setting and updating hierarchial thresholds. In
this subsection, we first introduce MinMax operator and extract a few useful
properties. Then we specify the basic approach to a more efficient one named
MINMAX approach according to the extracted properties. Finally, we present
method of threshold maintenance by using the MinMax operator.

First, we give the definition of the MinMax operator, in which the input is a
point set with the same dimensionality and the output is a single point. Suppose
data set2 P = {p1, p2, ..., pn}, MinMax(P) is defined as follows.

maxi = MAXd
k=1pi[k] (1 ≤ i ≤ n)

minmax = MINn
i=1maxi

MinMax(P) = {minmax, minmax, ..., minmax︸ ︷︷ ︸
d

} (1)

Fig. 3 shows an example of the MinMax operator. Point set P consists of five
2-dimensional points. We observe maxi = pi[y] when i = 1, 2 and maxi = pi[x]
when i = 3, 4, 5. As shown in Fig. 3, p3[x] is the smallest among p1[y], p2[y],
p3[x], p4[x], p5[x], so MIN{p1[y], p2[y], p3[x], p4[x], p5[x]} equals to p3[x]. As a
result, MinMax (P) returns (p3[x], p3[x]). The MinMax operator possesses the
following Lemmas.
2 Suppose sensed values on each dimension are always limited within a value range.

Without loss of generality, we normalize values on each dimension to be within the
range [0, 1].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 H. Chen, S. Zhou, and J. Guan

MinMax(P)

x

p1

p2

p3
p4 p5

y

Fig. 3. The MinMax operator

Lemma 2. Given two data sets P = {p1, p2, ..., pm} and Q = {q1, q2, ..., qn},
MinMax(P ∪ Q)=MinMax(P ∪ MinMax (Q))=MinMax(MinMax(P) ∪ Q)=
MinMax(MinMax(P) ∪ MinMax (Q)).

Proof. This lemma is obvious and we omit the proof here. �

Lemma 3. Given point set P = {p1, p2, ..., pm} and a point τ = (vτ , vτ , ..., vτ)
with the same value on all dimensions, P � τ ≡ MinMax(P) � τ and P � τ ≡
MinMax(P) � τ .

Proof. Suppose maxi =MAXd
k=1pi[k] (1 < i ≤ m), and minmax=MINm

i=1maxi.
Without loss of generality, we assume minmax = max1 and thus MinMax(P) =
(max1, max1...max1). It is obvious p1 � (max1, max1, ..., max1).

– Necessary Condition: If MinMax(P) � τ , that is (max1, max1, ..., max1) �
τ , then p1 � τ and thus P � τ . If MinMax(P) � τ , it means max1 > vτ

and thus p1 � τ . Note that maxi ≥ max1 when i = 2, 3, ..., m, thus �pi,
pi � τ, i = 1, 2, ..., m. Therefore, P � τ .

– Sufficient Condition: If P � τ , then there exists at least one point pk � τ .
It indicates that maxk ≤ vτ . Since max1 ≤ maxk, it can be deduced that
p1 = MinMax(P) � τ . If P � τ , then maxi > vτ , i = 1, 2, ..., m. Thus,
MinMax(P) � τ . �

Lemma 4. Given two point sets P = {p1, p2, ..., pm} and Q = {q1, q2, ..., qn}, if
P � Q, then MinMax(P) � MinMax(Q).

Proof. Suppose maxpi=MAXd
k=1pi[k] and minmaxp=MINm

i=1maxpi, (i=1, 2, ...,
m). Without loss of generality, assume minmaxp=maxp1 and thus MinMax(P)
= (maxp1, maxp1...maxp1). The same for Q, assume minmaxq = maxq1 and
MinMax(Q) = (maxq1, maxq1...maxq1). Because P � Q, there must exist pj(1 <
j ≤ m), pj � q1. As a result, maxpj ≤ maxq1. Note that maxp1 ≤ maxpj , thus
maxp1 ≤ maxq1. Therefore, MinMax(P) � MinMax(Q). �

MINMAX Approach. Now we describe the MINMAX approach that utilizes
properties of the MinMax operator, which further promotes efficiency of skyline
computation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 111

In the first round, there is no historical information on each node, thus the
näıve approach is applied. Once the näıve approach is finished, the hierarchical
threshold at each node ui is initialized as τi=MinMax(LSi). Based on Lemma 4,
Rule 1 is satisfied. Rule 2 also holds since LSi is known to its parent. The first
phase Up Report is the same as that of the basic approach and the second phase
Down Query is revised as follows.

Root node ur first computes the local skyline LSr among its own point and
the reported points from its children. Instead of sending LSr, ur just sends
MinMax(LSr), denoted as minmaxr. According to Lemma 3, minmaxr has
the equivalent dominating ability to LSr. Note that LSr may contain a large
amount of points, especially on the high-dimensional data. As a result, such
transformation minimizes the query to be one-point message and thus signifi-
cantly reduces the traffic cost. Then root ur queries each of its children ui that
satisfies minmaxr � τi.

Internal nodes: Once node ui receives minmaxp from its parent, it computes
minmaxi = MinMax (non-reported points ∪ {minmaxp}). Based on Lemma 2
and 3, sending minmaxi is equivalent to sending the points from ui and the
ancestors of the ui. Thus ui sends minmaxi to each of its children uc that
satisfies minmaxi � τc. After the children reply the query with new points that
are not dominated by minmaxi, ui updates the final local skyline FLSi. Finally,
ui sends to its parent FLSi. If ui is the root, then FLSi is the final skyline.

Leaf nodes: If leaf node ui has reported pi in the first phase or satisfies
minmaxp ≺ pi, it does not reply. Otherwise, ui reports pi (pi is just FLSi).

MinMax-Threshold Maintenance. In the first phase, if ui reports Pi to
its parent, τi(r+1) is set to MinMax ({τi(r)}∪Pi). Otherwise, τi(r+1) is set to
τi(r). In the second phase, if ui receives the query from its parent up, τi(r + 1)
is set to MinMax ({minmaxi} ∪FLSi). Otherwise, τi(r + 1) keeps unchanged.

The threshold maintenance method is quite straightforward. In the first phase,
Pi breaking threshold τi means that τi is set too large, so τi should be lowered
according to Pi. In the second phase, it indicates that threshold τi is set too
small if ui receives the query. Thus, it is required to reset τi using minmaxi

and FLSi that reflect the points from its subtree or even other subtrees. Such
updating benefits since the most points of its subtree can be suppressed if they
are dominated by another subtree in the following rounds.

Lemma 5. The maintained MinMax-threshold follows Rule 1 and Rule 2.

Proof. Suppose uc is a child of ui. In the first round, the threshold is set according
to the local skyline. On one hand, LSi � LSc can deduce MinMax(LSi) �
MinMax(LSc) based on Lemma 4, thus Rule 1 is satisfied. On the other hand,
uc reports LSc to ui, thus ui knows threshold τc. We next study the threshold
updating for the subsequent rounds. Suppose in the rth round, both rules are
satisfied, we prove that the rules still hold in the (r + 1)th round.

In the first phase, uc reports Pc that are not dominated by τc. Since both Pc

and τc are known to ui, ui can compute τc(r+1). Therefore, Rule 2 holds. It can
also be deduced that Pi ∪{τi} � Pc because ∀p ∈ Pc, p ≺ τi or p � Pi. Note that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 H. Chen, S. Zhou, and J. Guan

τi � τc, so Pi ∪ {τi} � Pc ∪ {τc}. According to Lemma 4, τp(r + 1) � τc(r + 1)
and Rule 1 holds.

In the second phase, we discuss two situations whether minmaxi�τc or not.

– If minmaxi � τc, then we need to prove {minmaxi} ∪FLSi � {minmaxc}
∪FLSc according to Lemma 4. Since FLSi � FLSc, it can be simplified
to {minmaxi} ∪ FLSi � minmaxc. Note that minmaxc = MinMax (non-
reported points ∪ {minmaxi}). According to Lemma 3 and Lemma 4, it
can be further transferred to prove {minmaxi} ∪ FLSi � non-reported
points ∪ {minmaxi}. It is satisfied because ∀p ∈ non-reported points,
p ≺ minmaxi or p � FLSi. Thus Rule 1 holds. Meanwhile, FLSc will
be reported to ui, so Rule 2 also holds.

– If minmaxi � τc, then τc(r+1) keeps unchanged. Thus, Rule 2 holds. We now
show the proof of minmaxi � τc(r + 1). Note that minmaxi is constructed
by the points from the ancestors of uc using the MinMax operation. It is
obvious that these points dominate {τc(r)}∪Pc that is used to set τc(r +1).
Thus, Rule 1 is satisfied based on Lemma 4. �

MINMAX further reduces cost of the second phase by transforming a point set
to a single point via the MinMax operator. During high dimensional skyline com-
putation, cost saving is significant. Lemma 5 guarantee the maintained thresh-
olds satisfy Rule 1 and 2. As a result, correct skyline will be obtained.

4.4 Failure Management

Our threshold-based approach is discussed in the ideal situation without any
node or link failure. It is also scalable to handle network failures by adjusting
the parent-child relationship. Once node ui detects a failure between itself and
its parent using reliable communication protocol, ui broadcasts recovery message
containing threshold τi to find a new parent among its neighbors. The nodes that
are not the descendants of ui send a reply with their thresholds. Then ui picks
up node uj with τj � τi as its parent. If no such node exists, the parent is chosen
to be node uj with the minimum distance |τiτj |. In this case, the threshold of
each ancestor ua with τa � τi should be reset to τi. However, it is possible that ui

does not receive any reply. This means that all its neighbors reside in the subtree
rooted at ui, thus it has to choose one descendant to reconnect the network and
adjust hierarchical thresholds. The worst situation is that ui may not be able to
find a path to the root, which indicates the low node density. In this case, any
approach is invalid to obtain data from the separated part of the network.

5 Performance Evaluation

This section evaluates the performance of proposed approaches, the näıve ap-
proach and the threshold-based approach MINMAX.

We developed a simulator for WSN, which can adjust parameters such as
the number of nodes, the transmission range and the size of the network area.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 113

The default settings of the simulated sensor network are as follows. The network
area is a rectangle grid of 200m × 200m, where 300 sensor nodes are randomly
distributed with the transmission range r = 50m. The routing tree is constructed
using the shortest path tree.

We use synthetic data for evaluation. Two data generation policies, random
policy and Multi-Signal Mixture (MSM) policy, are utilized. In the random pol-
icy, a node’s value v on each dimension is initiated randomly from [0, 1] in the
first round and varies with the maximum fluctuation value f < 1. Suppose
value on dimension i in round t is v(t)[i], in round (t+1), v(t+1)[i] changes
to v(t)[i]+rand(-f, f) with guarantee of being within [0, 1]. The second policy
generates value v on each dimension by simulating the scenario where sensor
nodes sense signal strength from multiple signal generators. The signal strength
received at each node is the sum of attenuated strength at that position from
each signal generator. Note that the default network area is [0, 200]× [0, 200], we
distribute 50 signal generators randomly in the area3 of [−200, 400]×[−200, 400].
The received signal strength (RSS) can be calculated by log-normal model [21].

RSS(dist) = ps − pl(d0) − 10ηlog10
dist

d0
(2)

ps is the generator power, pl(d0) is path loss for a reference distance of d0, η is
the path loss exponent, and dist is the distance from the generator. As a result,
the summed strength can be calculated as v =

∑50
i=1(psi−pl(d0)−10ηlog10

disti

d0
),

where disti is the distance from each generator. Generator strength ps is ran-
domly initiated from [0, 1] with the maximum fluctuation value f < 1. The MSM
policy can produce data reflecting the real environment where the nearby sensor
nodes always obtain the similar values. Without specific indication, the default
parameter values are set to dimensionality d = 3, f = 0.01 and the number of
rounds is 50.

The performance is evaluated in terms of the average energy consumption per
node. We only account for the communication cost since it dominates the total
energy consumption [14].

Dimensionality. Fig. 4 shows the performance results when the dimension-
ality varies between 2 and 5. With the increasing of the dimensionality, the
average energy consumption per node increases for each approach. MINMAX is
superior to the näıve approach in any dimensionality, reducing the cost about
80% and 60% on 2-dimensional random data and MSM data respectively. How-
ever, the difference shrinks with the increasing of the dimensionality because
the dominance relationship between high-dimensional points is weakened. When
dimensionality d = 5, MINMAX only achieves about 10% ∼ 20% cost saving.

Data fluctuation. Fig. 5 presents the influence of data fluctuation on the per-
formance of the proposed approaches. The data fluctuation value f varies be-
3 The distribution area of the signal generators must guarantee each node be included

in skyline with the same probability.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 H. Chen, S. Zhou, and J. Guan

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Dimensionality

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(a) Random data

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Dimensionality

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(b) MSM data

Fig. 4. Performance vs. Dimensionality

0.01 0.02 0.03 0.04 0.05
0.2

0.4

0.6

0.8

1

The maximum fluctation value

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(a) Random data

0.01 0.02 0.03 0.04 0.05
0.2

0.4

0.6

0.8

1

The maximum fluctation value

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(b) MSM data

Fig. 5. Performance vs. Data fluctuation

tween 0.005 and 0.05 for both the random and MSM data. The näıve approach is
not affected by data varying, costing almost equally. MINMAX outperforms the
näıve approach and also exhibits acceptable robustness on significantly varying
data. The energy consumption fluctuates without obvious deviation. The reason
is that when data is uniformly distributed, the number of the dominated points
remains close for two consecutive rounds because the number of new dominated
points counterbalances the number of new non-dominated points.

Network size. Fig. 6 shows the performance comparison as the network size
increases from 200 to 700. To maintain the node density, the network area is
enlarged proportionally to the network size. With the increasing of the network
size, the energy consumption of the näıve approach rises. This is because the en-
largement of the network area and size results in the growing of the routing tree.
Thus, the nodes close to the root consume more energy due to more local skyline
points, which increases the average energy consumption of the entire tree. The
result of MINMAX is just opposite. As the network size increases, the network
cost of MINMAX drops. The reason is that the heightening of the routing tree
makes reports and queries be transmitted comparative less hops before pruned.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks 115

200 300 400 500 600 700
0.2

0.4

0.6

0.8

1

Number of sensor nodes

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(a) Random data

200 300 400 500 600 700
0.2

0.4

0.6

0.8

1

1.2

Number of sensor nodes

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(b) MSM data

Fig. 6. Performance vs. Network size

Communication range. Fig. 7 illustrates the impact of the communication
range on the energy consumption. The cost of each approach is inversely pro-
portional to the communication range. Note that the increasing of the communi-
cation range increases the degree of the node so that an internal node possesses
more children. As a result, the larger broadcasting range, equivalent to stronger
pruning effect, improves the efficiency of both approaches.

30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

1.2

Communication range (m)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(a) Random data

30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

1.2

Communication range (m)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

no
de

 (
J) Naive

MINMAX

(b) MSM data

Fig. 7. Performance vs. Communication range

6 Conclusion

This paper addresses a new problem of continuous skyline monitoring in sensor
networks. To solve the problem in an energy-efficient way, we propose a näıve
approach as baseline and a sophisticated hierarchical threshold-based approach
MINMAX that is based on a basic version. The basic approach contains two
phases: 1) Up Report : the points not dominated by thresholds are reported, 2)
Down Query: fetching the final skyline from the nodes whose thresholds are not
dominated by the query. The basic approach can obtain the correct skyline ef-
ficiently if the hierarchical thresholds are established in the network. MINMAX
introduces the MinMax operator that significantly promotes the efficiency of the
second phase by minimizing the size of query message. The MinMax operator is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 H. Chen, S. Zhou, and J. Guan

also used for hierarchical threshold maintenance, guaranteeing the correctness
of MINMAX. We also present effective strategies to deal with the unexpected
node or link failures in the dynamic environment. Finally, the simulated experi-
ments demonstrate that the proposed MINMAX approach outperforms the näıva
approach under all tested situations.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “a survey on sensor
networks,” IEEE Communications Magazine, vol. 40, pp. 102–114, August 2002.

2. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design of an
acquisitional query processor for sensor networks,” in Proc. of SIGMOD, pp. 491–
502, 2003.

3. Y.Yao and J.Gehrke, “Query processing in sensor networks,” in Proc. ofCIDR, 2003.
4. D. J. Abadi, S. Madden, and W. Lindner, “Reed: Robust, efficient filtering and

event detection in sensor networks,” in Proc. of VLDB, pp. 769–780, 2005.
5. J. W. Branch, B. K. Szymanski, C. Giannella, R. Wolff, and H. Kargupta, “In-

network outlier detection in wireless sensor networks,” in Proc. of ICDCS, 2006.
6. S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in Proc. of

ICDE, pp. 421–430, 2001.
7. D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online

algorithm for skyline queries,” in Proc. of VLDB, pp. 275–286, 2002.
8. D. Papadias, Y. Tao, and G. Fu, “An optimal and progressive algorithm for skyline

queries,” in Proc. of SIGMOD, pp. 467–478, 2003.
9. W.-T. Balke, U. Guntzer, and J. X. Zheng, “Efficient distributed skylining for web

information systems,” in Proc. of EDBT, pp. 256–273, 2004.
10. W.-T. Balke and U. Guntzer, “Supporting skyline queries on catagorical data in

web information systems,” in Proc. of IMSA, 2004.
11. K. Hose, “Processing skyline queries in p2p systems,” in VLDB 2005 Ph.D Work-

shop, pp. 36–40, 2005.
12. P. Wu, C. Zhang, and Y. Feng, “Parallelizing skyline queries for scalable distribu-

tion,” in Proc. of EDBT, pp. 112–130, 2005.
13. X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: Efficient skyline com-

putation over sliding windows,” in Proc. of ICDE, pp. 502–513, 2005.
14. W. Pottie and W. Kaiser, “Wireless integrated network sensors,” Communications

of the ACM, vol. 43, pp. 51–58, May 2000.
15. A. Silberstein, R. Braynard, and J. Yang, “Constraint chaining: on energy-efficient

continuous monitoring in sensor networks,” in Proc. of SIGMOD, pp. 157–168,
2006.

16. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Compressing historical infor-
mation in sensor networks,” in Proc. of SIGMOD, pp. 527–538, 2004.

17. C. Guestrin, P. Bodk, R. Thibaux, M. A. Paskin, and S. Madden, “Distributed
regression: an efficient framework for modeling sensor network data,” in Proc. of
IPSN, pp. 527–538, 2004.

18. Z. Liu, K. C. Sia, and J. Cho, “Cost-efficient processing of min/max queries over
distributed sensors with uncertainty,” in Proc. of SAC, pp. 634–641, 2005.

19. A. Silberstein, K. Munagala, and J. Yang, “Energy-efficient monitoring of extreme
values in sensor networks,” in Proc. of SIGMOD, pp. 169–180, 2006.

20. Crossbow Inc, “MPR-Mote Processor Radio Board User’s Manual”.
21. T. S. Rappaport, Wireless Communications. Principles Practice, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple
Encryption

Melek Önen and Refik Molva

Institut Eurécom
Sophia-Antipolis, France

{melek.onen,refik.molva}@eurecom.fr

Abstract. Data aggregation has been put forward as an essential tech-
nique to achieve power efficiency in sensor networks. Data aggregation
consists of processing data collected by source nodes at each intermediate
node enroute to the sink in order to reduce redundancy and minimize
bandwidth usage.

The deployment of sensor networks in hostile environments call for
security measures such as data encryption and authentication to prevent
data tampering by intruders or disclosure by compromised nodes. Ag-
gregation of encrypted and/or integrity-protected data by intermediate
nodes that are not necessarily trusted due to potential node compromise
is a challenging problem. We propose a secure data aggregation scheme
that ensures that sensors participating to the aggregation mechanism
do not have access to the content of the data while adding their sensed
values thanks to the use of an efficient homomorphic encryption scheme.
We provide a layered secure aggregation mechanism and the related key
attribution algorithm that limits the impact of security threats such as
node compromises. We also evaluate the robustness of the scheme against
node failures and show that such failures are efficiently recovered by a
small subset of nodes that are at most m hops away from the failure.

1 Introduction

Wireless sensor networks (WSN) are viewed as a popular solution to various
monitoring problems such as safety monitoring, wildfire tracking and traffic
monitoring. A WSN consists of thousands of sensors that are in charge of both
monitoring and data transmission tasks. The data collected by each sensor is
transmitted via a network consisting of other sensors towards a well identified
destination node called sink. In the basic setting of a WSN, each individual piece
of data is thus independently transmitted over several hops towards the sink and
each sensor node is involved in the forwarding of a large number of data pieces
originated from other sensors. In the resource constrained WSN environment,
forwarding of large amounts of data becomes the major focus of energy and
bandwidth optimization efforts. Data aggregation has thus been put forward

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 117–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 M. Önen and R. Molva

as an essential technique to achieve power and bandwidth efficiency in WSN.
Based on the principle that the sink does not necessarily need all raw pieces of
information collected by each sensor but only a summary or aggregate thereof,
data aggregation consists of processing data collected by source nodes at each
intermediate node enroute to the sink in order to reduce redundancy and mini-
mize bandwidth usage. A common way to aggregate data in sensor networks is
to simply sum up values as they are forwarded towards the sink. Such additive
aggregations are useful for statistical measurements such as mean or variance
computation.

As a distributed task achieved by several potentially compromised nodes, data
aggregation raises some new security concerns in addition to the basic vulnerabil-
ities of a WSN [1]. Data aggregation in WSN is thus exposed to various threats
such as node compromise, injection of bogus aggregates, disclosure of sensed
data and aggregate values to intruders or tampering with data transmitted over
wireless links. In this paper, we focus on the problem of data confidentiality with
a twofold objective: first to prevent intruders from accessing individual monitor-
ing results, second to prevent any node other than the sink from accessing the
aggregate values. While classical data encryption mechanisms easily meet the
first objective, the second objective raises a new requirement for sensor nodes
involved in the computation of intermediate aggregate values: each sensor node
must be able to combine the locally monitored value that is in cleartext with
the encrypted aggregate value received from adjacent nodes in order to come
up with a new encrypted aggregate value. This problem typically calls for some
form of homomorphic encryption technique. Existing solutions based on homo-
morphic encryption [2,3] either suffer from excessive computational complexity
or are vulnerable to node compromise.

We suggest a secure additive data aggregation scheme based on the use of an
efficient homomorphic encryption technique combined with a multiple encryp-
tion scheme using symmetric algorithms. The homomorphism of the underlying
encryption technique allows sensors to aggregate their cleartext measurements
with the encrypted aggregate values whereas the multiple encryption scheme
assures that aggregate values and individual measurement results remain obliv-
ious to all intermediate nodes enroute to the sink. The joint use of the homo-
morphism and multiple encryption assures that a secret channel is established
between every sensor node and the sink without having to establish pairwise
security associations or a public-key infrastructure.

We first analyze the security requirements raised by secure data aggregation
and describe the need for homomorphic encryption functions. We then briefly
present the CTR encryption scheme proposed by Bellare et al. in [4], and its
extension in [5] for the context of multicast confidentiality. We show that CTR
is homomorphic and introduce the proposed layered secure aggregation scheme
based on CTR. We then evaluate the effectiveness of the proposed scheme in
terms of security, safety and performance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 119

2 Problem Statement

2.1 Aggregation in Wireless Sensor Networks

We model a wireless sensor network (WSN) as a rooted tree T = (V , E) where V
is the set of nodes corresponding to the sensors and E is the set of edges between
these nodes. The root S of the tree corresponds to the sink. Each other node
has one or more incoming edges but a unique outgoing edge.

Aggregation techniques are used to reduce the amount of data communicated
within a WSN. As measurements are recorded periodically at each sensor, one
way to aggregate such information is the additive aggregation that is the addition
of values as they are forwarded towards the sink. Each node receives packets
from the incoming edges, aggregates them and sends the result via the outgoing
edge. The sink collects the final set of aggregated packets and completes the
aggregation task. Additive aggregation techniques are very useful for statistical
measurements in sensor networks. Hence, once the sink receives the addition of
some values, it can easily compute the mean or variance of the received values.

2.2 Security Requirements

In the context of secure data aggregation, we distinguish two confidentiality
requirements:

– generic confidentiality whereby sensors not participating to the aggrega-
tion mechanism, should not have access to the content of the data.

– end-to-end confidentiality whereby sensors actively participating to the
aggregation mechanism do not access the data that is already aggregated.

As to generic confidentiality, sensors need to use some cryptographic encryp-
tion algorithms in order to let only authorized sensors access the content of the
data. Since sensor nodes have very limited resources, symmetric encryption al-
gorithms are more suitable for such networks. However, with the use of classical
encryption schemes such as AES [6], every sensor should first decrypt the re-
ceived measurements in order to aggregate their own measured value and then
re-encrypt the result in order to send it to the next sensor enroute to the sink.
In this case, all sensors would have access to aggregated measurements. In order
to prevent such access and thus to ensure end-to-end confidentiality, we propose
a new framework that implements homomorphic encryption algorithms.

2.3 The Proposed Framework

We propose a framework whereby sensors participate to a secure aggregation
mechanism without having access to the protected data. In order to ensure end-
to-end confidentiality, the framework uses additive homomorphic encryption al-
gorithms. Moreover, measurements are protected with multiple encryption lay-
ers. Sensors receiving encrypted data would be able to suppress some encryption
layers, aggregate their measurements and add new encryption layers. Thanks to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

120 M. Önen and R. Molva

a new key attribution algorithm, only the sink is able to suppress all encryption
layers and thus access the finally aggregated result. Since each sensor modifies
the encryption of the data, the compromise of some intermediary nodes does not
provide access to the protected data.

In the following section, we describe the CTR homomorphic encryption al-
gorithm that is extended in our framework. We then introduce the new key
attribution algorithm that is used in the new secure aggregation scheme that
ensures both generic and end-to-end confidentiality.

3 The Proposed Encryption Algorithm

3.1 Additive Homomorphic Encryption

End-to-end confidentiality as defined in section 2.2 requires a homomorphic en-
cryption scheme. A homomorphism is defined as a map φ : X −→ Y such that:

φ(x · y) = φ(x) ◦ φ(y) (1)

where · and ◦ respectively are the operations in X and Y . If φ is a homomorphic
encryption algorithm, and if · is the aggregation operation, thanks to the homo-
morphism of φ encrypted individual measurements can be aggregated into an
encrypted aggregate value. Hence, let Ni be a sensor receiving encrypted mea-
surements φ(Vj) and φ(Vk). Ni first senses Vi, computes φ(Vi) and aggregates
the three encryptions as φ(Vj) ◦ φ(Vk) ◦ φ(Vi). Thanks to the homomorphism
of φ, this result is identical to the encrypted aggregate value: φ(Vj · Vk · Vi). It
should be noted that Ni was able to aggregate its measurement with the received
values without accessing the measurements in this example.

Let M be the set of plaintext messages and K be the set of encryption keys. In
the context of secure data aggregation, we propose that the encryption function φ
represents an additive homomorphic encryption scheme that encrypts a message
x ∈ M with the encryption key k ∈ K as follows:

φ : (M, K) −→ M
φ(x, k) = (x + k) mod n (2)

n is the cardinality of M. It is easy to show that φ is a homomorphic function.
Hence, let xa and xb two different plaintext messages in M and ka and kb

encryption keys in K. We have:

φ(xa, ka) = (xa + ka) mod n

φ(xb, kb) = (xb + kb) mod n

φ(xa, ka) + φ(xb, kb) = (xa + ka + xb + kb) mod n

= φ(xa + xb, ka + kb)

The security of this scheme relies on the unique utilization of the key. Hence,
as one-time pads, for each message, the encryption must use a different key.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 121

Thus, an efficient key generation algorithm is required for each encryption op-
eration. We propose to implement the basic CTR function proposed by Bellare
et al. in [4] that allows the generation of a different key for each encryption op-
eration. Thanks to this scheme that is briefly described in the following section,
sensors are able to update their encryption key without receiving any additional
information from the sink.

3.2 CTR Encryption Scheme

In [4], Bellare et al. describe and analyze various cipher modes of operation.
In this section, we briefly describe their proposed counter based block cipher
mode of operation (CTR-mode) which we extend in our proposed scheme. We
denote ⊕ as the binary XOR operation and define fa as a l-bit pseudorandom
permutation such as AES [6] where a is the encryption key. The CTR-mode
scheme is a triplet (K, E , D) defined as follows:

– K flips coins and outputs a random key a;
– E(ctr, x) splits x into n blocks of l bits x = x1, .., xn, and for each xi returns

yi = fa(ctr + i) ⊕ xi. Finally, ctr is updated by ctr + n;
– Symmetrically, D(ctr, y) first splits y into n blocks of l bits y = y1, .., yn,

and for each yi, it returns xi = fa(ctr + i) ⊕ yi. Similarly, ctr is updated by
ctr + n.

The counter ctr is maintained by the encryption algorithm across consecutive
encryptions with the same key. Thanks to this counter, the receiver that knows
the key a can recompute each fa(ctr+i) and thus retrieve the original message x.

3.3 Multiple Key CTR Encryption for Secure Data Aggregation

In order to introduce the secure data aggregation, we propose an extended ver-
sion of the CTR encryption with the use of multiple keys for both encryption
and decryption. We first replace the XOR operation by the additive homomor-
phic encryption scheme defined in equation 2. In the sequel of this paper a + b
and a − b are respectively defined as (a + b) mod n and (a − b) mod n. The new
basic encryption is again a triplet (K, E , D) such that:

– K flips coins and outputs a random key a;
– E(ctr, x) splits x into n blocks of l bits and for each xi returns yi = fa(ctr +

i) + xi. Finally ctr is updated by ctr + n;
– D(ctr, y) splits y into n blocks of l bits and for each yi returns xi = yi −

fa(ctr + i).Finally, ctr is updated by ctr + n.

Since (K, E , D) is also homomorphic, we now focus on the problem of end-to-
end confidentiality whereby sensors perform aggregation operations using this
scheme. Since sensors are not authorized to access the content of their received ag-
gregated information, different keys should be distributed to each sensor. In this
case, we propose a triplet (K(r), E(r), D(r)) with r independent keys as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 M. Önen and R. Molva

– K(r) chooses r random keys a1, .., ar;
– E(r)(ctr1, .., ctrr, x) splits x into n blocks of l bits x = x1, .., xn, and for each

xi returns yi = xi +
∑r

j=1 faj (ctrj + i);
– D(r)(ctr1, .., ctrr, y) splits y into n blocks of l bits y = y1, .., yn in order to

retrieve xi = yi −
∑r

j=1 faj (ctrj + i).

We recall the security property that claims that a message encrypted with
multiple keys is at least secure as any individual encryptions [7]. It is obvious that
(K(r), E(r), D(r)) is homomorphic since the encryption and decryption operations
are respectively defined by additions and subtractions that are by definition
homomorphic.

4 The Proposed Model: Layered Secure Aggregations

Now that we have defined the security requirements specific to the problem of
data aggregation and that we have described the proposed CTR encryption al-
gorithm, we describe the proposed layered secure aggregation scheme that allows
sensors to aggregate measurements while the data remains confidential. Thanks
to the addition of multiple encryption layers, the scheme remains secure against
attacks such as node compromise. We first introduce a new key attribution al-
gorithm that defines the keying material of each sensor and then present the
aggregation protocol.

4.1 Notation

As described in section 2.1, a wireless sensor network is represented by a tree T .
We define the function Depth that given a node identity Ni returns its depth
in the tree. We set Depth(S) = 0. Within this tree, we also define the following
relations between nodes:

– Root(T) represents the data sink that collects and extracts the aggregated
data;

– Parent(N, m) is the mth parent of N if it exists or S otherwise;
– Children(N, m) is the set of nodes Ni such that ∀i, N = Parent(Ni, m).

In order to implement the CTR encryption algorithm with multiple encryp-
tion keys in the context of secure data aggregation, we define a key attribution
algorithm that is explained in the following section. Thanks to this algorithm,
any node will be able to add or suppress some encryption layers without causing
any leakage of secret information.

4.2 The Proposed Key Attribution Algorithm

In this section, we describe a new key attribution algorithm for the proposed
aggregation protocol. Thanks to this algorithm, the sink is able to aggregate all
the measurements without leaking any secret information to any node including
the sensors that participate to the aggregation mechanism.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 123

Each node Ni shares a key ai,j and a counter ctri,j with a node Nj where
Nj = Parent(Ni, m). We also define a different key and counter (al,k, ctrl,k)
shared between a leaf node Nl and Nk = Parent(Nl, t), for each 0 < t < m. The
key attribution algorithm is summarized in Table 1.

Table 1. The key attribution algorithm

For each node Ni in T :
define (ai,j , ctri,j) for Ni and Nj = Parent(Ni, m);
if Ni is a leaf node
then

for each t < m
define (ai,k, ctri,k) for Ni and Nk = Parent(Ni, t);

else
set t = 0;
while Children(Ni, m − t) = ∅

increment t by one;
define (ai,j , ctri,j) for Ni and Nj ∈ Children(Ni, m − t);

In order to illustrate this algorithm, we define a WSN with 11 nodes repre-
sented in Figure 1. In this particular network, we set m = 2. Following the key
attribution protocol, all leaf nodes, N5, N6, N9 and N10 share one key with their
direct parent and another one with their grandparent. For example, node N9
shares a7,9 with node N7 and a4,9 with node N4. Node N1 which is an interme-
diate node, shares a different key with nodes N5, N6, N7 and N8 which are in
Children(N1, 2) and with S since Parent(N1, 2) = S.

4.3 The Aggregation Protocol

Now that we have defined the key attribution algorithm, each node is ready
to aggregate its measurement with the received values from its children nodes.
In this paper, we define the aggregation operation as a sum computation. This
operation can also be a mean or variance computation. Since the encryption
algorithm is homomorphic, each node adds the received values to the measured
value without having to access the content of the aggregated data.

Table 2 illustrates the additive aggregation protocol. A sensor Ni first ag-
gregates the received values and its measurement. From this value, Ni subtracts
keys that it shares with its mth children nodes Nj and adds the key that it shares
with its mth parent node Nk. Then, Ni sends the aggregated value denoted by
Ai to its parent node.

As an example, we examine in Table 3 how the proposed additive aggregation
protocol is applied on the tree of Figure 1. For the sake of clarity, we define ki,j

as the one-time-key originating from ai,j and ctri,j .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 M. Önen and R. Molva

N1

N3

N6 N7
N8

N9
N10

a7,9 a4,9;

N4

a8,10 a4,10

a7,9 a1,7
a8,10 a1,8

N2

N5
a3,6 a1,6a2,5 a1,5

a2,5 as,2
a3,6 as,3 a4,9 a4,10 as,4

a1,5 a1,6 a1,7 a1,8 a1,s

as,2 as,3 as,4 as,1S

;

; ;;;

; ; ; ;

; ; ; ;

; ; ;

Fig. 1. Implementation of the key attribution algorithm with m = 2

5 Evaluation

In the following sections, we review the proposed framework with respect to:

– confidentiality whereby intruders and sensors should not have access to
the content of the data (generic and end-to-end confidentiality);

– robustness whereby the impact of a node compromise or a node failure on
the aggregation scheme should be minimized.

We then evaluate the performance of the scheme in terms of memory and
CPU usage and in terms of communication overhead.

5.1 Security Evaluation

In this section, we first show that the proposed framework ensures generic con-
fidentiality and then consider the node compromise scenario that could prevent
the end-to-end confidentiality of the scheme.

Proposition 1. The scheme ensures generic confidentiality.

Proof. In a work evaluating the security of cryptosystems in the multi-user set-
ting [8], Bellare et al. have essentially shown that if a cryptosystem is secure in
the sense of indistinguishability, then the cryptosystem in the multi-user setting,
where related messages are encrypted using different keys, is also secure. This
result can be applied to the proposed scheme using CTR. When a message is
encrypted with r keys it is at least as secure as any individual encryption. Thus,
the scheme is at least as secure as a one layer encryption layer, if no node is
compromised.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 125

Table 2. The additive aggregation protocol

For each Ni with measured value Vi

if Children(Ni, 1) = ∅ then
Set Ai = Vi and l = 1;
for each l ≤ m

Ai = E(ctri,k, Ai) such that Nk = Parent(Ni, l)
else

Receive {Aj} from Nj ∈ Children(Ni, 1);
Compute Si =

∑
j,Nj∈Children(Ni,1)

Aj ;

for all l where Ni = Parent(Nl, m)
Compute Sdi = D(ctri,l, Si);

Compute Ai = E(ctrk,i, Sdi + Vi) such that Nk = Parent(Ni, m);

Send Ai to Parent(Ni, 1)

Moreover the security of encryption operation that simply is a modulo n
addition depends on the unique utilization of the encryption key. Thanks to
the existence of a counter, at each encryption operation, the encryption key is
updated and thus the operation is perfectly secure.

We now consider the node compromise scenario.

Proposition 2. An intruder can have access to an aggregated data originating
from node Ni only in two cases:

– Case 1: all the nodes in the subtree T ∗ of T whose root is Ni and depth is
m − 1 are compromised;

– Case 2: all nodes Nl such that Nl = Parent(Ni, k) for all 1 ≤ k ≤ m − 1
are compromised;

Proof. Let’s assume that node Ni is compromised. Then the intruder has access
to all keys stored by Ni, that are:

– {ai,j} shared between Ni and Nj such that Ni = Parent(Nj , m);
– ai,k shared between Ni and Nk such that Nk = Parent(Ni, m);

When Ni receives aggregated values from its children nodes, these values
are still encrypted with different keys by the nodes Nj ∈ Children(Ni, k) with
1 ≤ k ≤ m. Consequently, in addition to Ni, the intruder needs to compromise
all the nodes in the subtree T ∗ of T whose root is Ni and depth is m − 1. This
proves the Case 1 of proposition 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 M. Önen and R. Molva

Table 3. The Additive Aggregation Protocol: an example

Layer 4:

Node N9: Computes A9 = V9 + k7,9 + k4,9

Node N10: Computes A10 = V10 + k8,10 + k4,10

Layer 3:

Node N5: Computes A5 = V5 + k2,5 + k1,5

Node N6: Computes A6 = V6 + k3,6 + k1,6

Node N7: Receives A9 = V9 + k7,9 + k4,9

Suppresses a layer Sd7 = A9 − k7,9

Computes V7 + k1,7

Adds a layer A7 = V9 + V7 + k4,9 + k1,7

Node N8: Receives A10 = V10 + k8,10 + k4,10

Suppresses a layer Sd8 = A10 − k8,10

Computes V8 + k1,8

Adds a layer A8 = V10 + V8 + k4,10 + k1,8

Layer 2:

Node N2: Receives A5 = V5 + k2,5 + k1,5

Suppresses a layer Sd2 = A5 − k2,5

Computes V2 + ks,2

Adds a layer A2 = V5 + V2 + k1,5 + ks,2

Node N3: Receives A6 = V6 + k3,6 + k1,6

Suppresses a layer Sd3 = A6 − k3,6

Computes V3 + ks,3

Adds a layer A3 = V6 + V3 + k1,6 + ks,3

Node N4: Receives A7 and A8

Aggregates S4 = A7 + A8

Suppresses two layers Sd4 = A7 + A8 − k4,9 − k4,10

Computes V4 + ks,4

Adds a layer A4 = V10 + V9 + V8 + V7 + V4 + k1,7 + k1,8 + ks,4

Layer 1:

Node N1: Receives A2, A3 and A4

Aggregates S1 = A2 + A3 + A4

Suppresses four layers Sd1 = A2 + A3 + A4 − k1,5 − k1,6 − k1,7 − k1,8

Computes V1 + ks,1

Adds a layer A1 =
P10

i=1 Vi + ks,2 + ks,3 + ks,4 + ks,1

Layer 0:

Sink S: Receives A1

Suppresses all layers Sds = A1 − ks,2 − ks,3 − ks,4 − ks,1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 127

Furthermore, the keys used for the encryption of aggregated values by nodes
Nj that construct T ∗ are by definition shared with nodes Nl such that Nl =
Parent(Nj , m). Consequently if the intruder compromises these nodes, it also
can access the aggregated data originating from Ni. Since Ni = Parent(Nj , k)
with 1 ≤ k ≤ m, the intruder needs to compromise nodes Nl such that Nl =
Parent(Ni, n) with 1 ≤ n ≤ m−1. This result proves the Case 2 of proposition 2.

Therefore, the security of the scheme in terms of end-to-end confidentiality de-
pends on the choice of the value m. The larger values for m imply a larger
population to compromise for the intruders. However, if m is very large, the
scheme becomes inefficient since the number of encryption layers decreases and
the scheme tends to be vulnerable to threats such as node compromise. Hence,
if m equals the depth of T denoted by h, all nodes would share one key with
the sink. In this case, the advantage of the use of multiple encryption layers
disappears and the proposed scheme would be similar to the secure data aggre-
gation scheme in [2]. The scheme would still ensure end-to-end confidentiality,
but a node failure would have a strong impact on the aggregation scheme since
in addition to the aggregated data, sensors must include additional information
about the identities of nodes participating to the aggregation. Thus m must not
exceed h − 1. As a result, m should be as large as possible for security reasons
and small enough for the sake of robustness. The ideal value for m would be the
minimum depth of all leaf nodes in T .

5.2 Robustness of the Scheme

Data aggregation in WSN is exposed to the following threats:

– node compromise whereby intruders can have access to the security ma-
terial of a sensor participating to secure data aggregation. In this case, the
aggregation scheme is exposed either to the injection of bogus aggregates or
to some passive behavior from the compromised node;

– node failure whereby the node is off and thus cannot participate to the
aggregation mechanism;

– communication failure whereby messages enroute to the sink are lost;
– poisoning whereby intruders inject some bogus data and thus break the

aggregation mechanism.

The impact of a node failure or a communication failure remains the same as
the impact of passive behavior originating from a compromised node. Hence, in
all cases, a sensor does not receive any message from some of its children nodes
and thus should exclude some of its keying material from the next aggregation
process. The impact of such failures should be minimized.

Poisoning attacks and the injection of bogus aggregates by compromised nodes
first imply a strong need for an authentication mechanism that allows a sensor

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 M. Önen and R. Molva

to verify the origin and the integrity of the received data. We assume that there
is an underlying authentication mechanism such as digital signatures. However,
compromised nodes still can inject bogus aggregates although the verification
of their signature succeeds. In this particular case, since sensors do not have
access to the content of aggregates, such attacks are not detected and thus
bogus messages cannot be immediately discarded. We thus propose, a recovery
mechanism rather than a prevention mechanism that allows the sink to react
against such attacks by determining the origin of the attacks.

We thus mainly distinguish two classes of robustness problems and come up
with some recovery mechanisms for each of them: the bogus message injec-
tion originating from compromised nodes and the loss of messages.

Protection against bogus message injection. We first evaluate the perfor-
mance of the scheme when the intruder compromising Ni performs some bogus
injection. In this case, the sink might possibly notice the attack once the ag-
gregation protocol is complete, that is, when it decrypts the aggregated value.
Therefore, the sink cannot prevent such attacks but can react against them by
determining the origin of the attacks. Hence, when the sink notices such attacks
due to some exaggerated values that would result from aggregation, it first con-
tacts its children nodes and sends them the required decryption material (that
is one-time) in order to let them discover the origin of the failure. This process
is recursively run along the tree. Thus, the cost of discovering the compromised
node is in the order of log(N) where N is the number of sensors and the verifi-
cation task is distributed to all nodes of the tree. The process of compromised
nodes discovery is summarized in Table 4.

Protection against message losses. We now consider the case when there is a
node or communication failure that imply some message loss: an error may occur
during the decryption of the aggregated data. The same problem can happen
when an intruder compromising a node shows a passive behavior. In this case,
a node that did not receive any aggregated information from one of its children
nodes, alerts nodes that are at most m distant from it about the identity of the
misbehaving node. All nodes receiving this alert, will remove the keys that are
related with the misbehaving node and proceed the aggregation protocol with
the remaining keys. The alert messages only reach nodes that are m distant
from the misbehaving node and thus have a local impact on the communication
overhead.

In order to illustrate this recovery mechanism, we again refer to the WSN rep-
resented in Figure 1 and we assume that node N10 did not send its measurement
to N8. For the sake of simplicity, we again denote the one-time key resulting
from ai,j and the actual ctri,j by ki,j . In this particular case, keys k8,10 and k4,10
should not be used during the aggregation protocol. Thus, N8 sends an alert
message with the identity of N10 to N4. Since m = 2 and N4 = Parent(N10, m),
N4 does not need to forward this alert message to its parents. Table 5 illustrates

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 129

Table 4. The discovery of compromised nodes

let l = 0;
at layer l, for each Ni ∈ T

verify(agg value, expected value)
if OK then

ACCEPT agg value;
else

if Children(Ni, 2) = ∅ then
send alert(identity(Children(Ni)))

else
send (expected value, keying material) to Children(Ni, 1);

the aggregation process for nodes that are on the path from N10 to the sink.
While computing A8, N8 only includes V8 that is encrypted with k1,8. When
N4 receives A8, and A7, it does not use k4,10 and suppresses the only encryp-
tion layer originating from node N9 and finally adds an encryption layer with
ks,4. Once N4 sends A4 to N1, there is no more modification in the aggrega-
tion process and N1 will follow the additive aggregation protocol as defined in
Table 2.

5.3 Performance Evaluation

In this section, we evaluate the performance of the scheme in terms of mem-
ory storage, computational cost and communication overhead. The computa-
tional cost and communication overhead have a direct impact on the battery
usage.

First of all, the computational activity of each sensor for the encryption and
decryption operations is only the sum and substraction operations modulo n.
The encryption or decryption operations do not have an impact on the commu-
nication overhead. There is no additional information with respect to these two
operations. The sink only receives messages from its children nodes and proceeds
to the final step of aggregation.

Furthermore, thanks to the inherent key generation process provided by CTR,
there is no additional overhead originating from the update of any sensor’s
keys.

The memory cost is related to the proposed key attribution algorithm. Sensors
share one key with their mth parent node and one key with each of their mth
child nodes. Furthermore, if a sensor is a leaf node of T , this sensor shares one
key with each of its kth parent with 1 ≤ k ≤ m. Thus, the memory cost for each
sensor equals to:

– (|Children(N, m)| + 1) if Children(N, m) �= ∅,
– (|Children(N, k)| + 1) if Children(N, k) �= ∅ and Children(N, k + 1) = ∅.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 M. Önen and R. Molva

Table 5. Failure recovery of N10 in the path from N10 to S

Layer 3

Node N8 Does not receive A10

mark k8,10 as invalid
Computes A8 = V8 + k1,8

Sends A8 and failure alert(N10)

Layer 2

Node N4 Receives, A7, A8 and failure alert(N10)
mark k4,10 as invalid
Aggregates S4 = A7 + A8

Suppresses one layer Sd4 = A7 + A8 − k4,9

Computes V4 + ks,4

Adds a layer A4 = V9 + V8 + V7 + V4 + k1,7 + k1,8 + ks,4

Layer 1

Node N1 Receives A2, A3 and A4

Aggregates S1 = A2 + A3 + A4

Suppresses four layers Sd1 = A2 + A3 + A4 − k1,5 − k1,6 − k1,7 − k1,8

Computes V1 + ks,1

Adds a layer A1 =
∑9

i=1 Vi + ks,2 + ks,3 + ks,4 + ks,1

Layer 0

Sink S: Receives A1

Suppresses all layers Sds = A1 − ks,2 − ks,3 − ks,4 − ks,1

6 Related Work

In [3,9], authors propose to use homomorphic encryption schemes to allow secure
data aggregation. They implement the Domingo-Ferrer encryption scheme [10]
that is based on the computationally expensive discrete exponential technique.
The feasibility of this scheme in the context of resource constrained sensor envi-
ronment is analyzed in [11] and authors gave performance results on the Mica2
motes [12] and show that such measurements were quite reasonable.

In [2], authors propose a secure data aggregation scheme similar to ours that
is based on an extension of the one-time pad encryption technique using additive
operations modulo n. Even though our scheme seems to be more complex than
the solution of [2] due to the use of CTR and multiple encryption layers, our
scheme clearly imposes a lower communication overhead than the latter. In [2],
each aggregate message is coupled with the list of nodes that failed to contribute
to the aggregation because of node or communication failures. As opposed to [2],
in our scheme each failure only needs to be reported during m hops from the
location of the failure enroute to the sink. Thus, our scheme does not require the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Secure Data Aggregation with Multiple Encryption 131

reporting of failures beyond the mth parent of the failure point in the tree. More-
over, the security of the additive encryption operation is based on the unique
utilization of the encryption key. In order to update keys, [2] proposes to gen-
erate a key stream for each node using stream ciphers. This operation implies
an additional cost in terms of computation that is higher than the one resulting
from our scheme: Indeed, since in [2], sensors share keys only with the sink,
each time that a sink receives an aggregated message, it first needs to compute
all sensors’ keys in order to decrypt the corresponding message where as in our
scheme, the sink only needs to update keys that it shares with sensors that are
located in the subtree of depth m rooted at the sink.

7 Conclusion

In this paper, we analyze the problem of confidentiality in secure data aggrega-
tion mechanisms for wireless sensor networks. We first define two specific confi-
dentiality requirements: the sink should first ensure that sensors not participat-
ing to the aggregation mechanism do not access the content of the aggregated
data (generic confidentiality); moreover, sensors participating to the aggregation
mechanism should not access the already aggregated data without the autho-
rization of the sink (end-to-end confidentiality). We show that the use of ho-
momorphic encryption algorithms is essential for aggregation mechanisms and
propose the use of an extension of CTR encryption schemes. In order to protect
aggregation mechanisms against node compromise, we first define a key attribu-
tion algorithm whereby sensors store several keys with respect to their location
in the tree. We then describe a layered secure aggregation mechanism where
sensors basically add and suppress some encryption layers with respect to their
keying material. We show that this new framework provides both generic and
end-to-end confidentiality and is robust against bogus message injections and
message losses.

Future work should focus on investigating the problem of key pre-distribution
mechanism [13] related to the key attribution algorithm that should be self-
organized and efficient. We should also investigate on new solutions that prevent
bogus injection rather than minimizing the impact of such attacks.

References

1. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Com-
munications of the ACM 47 (2004) 53–57

2. Castellucia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data
in wireless sensor networks. In: Proceedings of the 2nd Annual International Con-
ference on Mobile and Ubiquitous Systems, Mobiquitous, San Diego, CA (2005)

3. Girao, J., Westhoff, D., Schneider, M.: CDA:Concealed Data Aggregation in Wire-
less Sensor Networks. In: Proceedings of ACM WiSe’04. (2004)

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: IEEE Symposium on Foundations of Computer Science.
(1997) 394–403

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 M. Önen and R. Molva

5. Pannetrat, A., Molva, R.: Multiple layer encryption for multicast groups. In: The
proceedings of CMS’02, Portoroz, Slovenia (2002)

6. of Standards, N.I., Technology: Advanced Encryption Standard (2001)
7. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press (1996)
8. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multiuser set-

ting: Security proofs and improvements. In: Eurocrypt 2000. Volume LNCS 1807.,
Springer Verlag (2000) 259–274.

9. Girao, J., Westhoff, D., Schneider, M.: CDA: Concealed data aggregation for re-
verse multicast traffic in wireless sensor networks. In: Proceedings of IEEE ICC’05,
Korea (2005)

10. Domingo-Ferrer, J.: A provably secure additive and multiplicative privacy homo-
morphism. In: Proceedings of the Information Security Conference, LNCS2433.
(2002)

11. Girao, J., Westhoff, D.: Concealed data aggregation in WSNs (demo). In: EWSN,
Switzerland (2006)

12. Crossbow products: (2004)
http://www.xbow.com/Products/WirelessSensorNetworks.htm.

13. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor net-
works. In: Proceedings of the ACM CCS’02, Washington D.C. (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data
Compression Architecture for Irregular Wireless

Sensor Networks

Thanh Dang, Nirupama Bulusu, and Wu-chi Feng

Department of Computer Science,
Portland State University,

PO Box 751, Portland, OR, USA
{dangtx,nbulusu,wuchi}@cs.pdx.edu

Abstract. In this paper, we propose and evaluate RIDA, a novel
information-driven architecture for distributed data compression in a
sensor network, allowing it to conserve energy and bandwidth and poten-
tially enabling high-rate data sampling. The key idea is to determine the
data correlation among a group of sensors based on the value of the data
itself to significantly improve compression. Hence, this approach moves
beyond traditional data compression schemes which rely only on spatial
and temporal data correlation. A logical mapping, which assigns indices
to nodes based on the data content, enables simple implementation, on
nodes, of data transformation without any other information. The logical
mapping approach also adapts particularly well to irregular sensor net-
work topologies. We evaluate our architecture with both Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform (DWT) on publicly
available real-world data sets. Our experiments on both simulation and
real data show that 30% of energy and 80-95% of the bandwidth can be
saved for typical multi-hop data networks. Moreover, the original data
can be retrieved after decompression with a low error of about 3%. Fur-
thermore, we also propose a mechanism to detect and classify missing or
faulty nodes, showing accuracy and recall of 95% when half of the nodes
in the network are missing or faulty.

Keywords: Distributed data compression, Error detection, Wavelet
analysis, DCT analysis, Sensor networks, Irregular network.

1 Introduction

With the continued development of sensor networking hardware, the ability to
deploy large numbers of sensors is becoming possible. Typically, the sensor net-
works are deployed to gather environmental information over a period of time
with the sensors working together to forward data to a central data sink. One
of the main challenges with such sensor networking technologies is the need to
minimize wireless packet transmissions in order to save power.

There are several basic ways to minimize the amount of traffic generated by the
sensor network. Aggregation techniques such as TinyDB [1]and TAG [2] process

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 133–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 T. Dang, N. Bulusu, and W.-c. Feng

and consume the collected data within the sensor network, forwarding only a
small subset of the data to the sink. Query-based techniques such as directed
diffusion aim to filter the data within the network to only what the application
requires. Low-level networking techniques have been proposed in order to help
route data within the sensor network with the hope of minimizing duplicated
packets and minimizing the number of hops needed to deliver the data. Finally,
data compression techniques are emerging for such sensor networks [3] [4] [5] [6]
[7] [8].

Compression can be applied to a single data stream being generated by a
single sensor [9]. The advantage of this approach is that the sensor will typically
be generating similar data over time. The drawback, however, is that if the data
from a single sensor is lost, then a significant amount of data may be lost. An
alternative approach is to cluster the sensors together and compress the data
across the sensors one snapshot at a time. The main advantage of this approach
is that it is more resilient to transmission errors. At the same time, however, all
the data needs to be transmitted at least once in order to be collected.

Correlation of data among sensors is determined not only by spatio-temporal
proximity, but other factors as well. Building on this observation, we propose a
cluster-based and information-driven architecture for a wide range of compres-
sion algorithms for scalar sensor data for a popular class of network of sensors.
The key contributions of this paper are as follows.

– The exploration beyond spatial and temporal correlation of data in sensor
networks. The key idea here is that correlation of the data is based on the
value of the data itself rather than other factors, which we will show later
are irrelevant in some cases.

– The information-driven architecture (RIDA) with a logical mapping frame-
work for various compression and analysis algorithms which builds on the
above observation. In this approach, data reported by sensors is observed
over a short period of time. After that, the pattern of the data can be used
to logically assign sensors with indices such that the correlation of data is uti-
lized. Depending on the underlying compression algorithm, an appropriate
logical assignment can be used.

– The design, implementation, and evaluation of different compression algo-
rithms (1D and 2D, DCT-based and wavelet-based) on real sensor data.

– A resiliency mechanism in RIDA for missing and faulty nodes in sensor
networks. We address a real practical problem in wireless sensor networks
where nodes are frequently missing or faulty.

In the next section, we will review related work. Section 3 will point out some
key observations about correlation of sensor readings that drive the design of our
architecture. Section 4 will describe the proposed information-driven architec-
ture for compression algorithms for sensor networking, including our proposed
resiliency mechanism. Section 5 will describe the experiments that we conducted
in order to show the efficiency of our approach. We discuss the limitation of our
approach and future work, and conclude in section 6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 135

2 Related Work

In this section, we review related work on data compression with emphasis on
data compression in sensor networks.

2.1 Data Compression

There are two main categories of data compression – lossless and lossy data com-
pression. Lossless compression algorithms usually generate a statistical model
of the data and map the data to bit strings based on the generated model.
Meanwhile in lossy compression, data is often transformed into a new space
using appropriate basis functions. In the new space, the data information or
signal energy is usually concentrated in a few coefficients. Hence, compression
can be achieved after quantization and entropy coding. For example, discrete
fourier transform (DFT), discrete cosine transform (DCT), and discrete wavelet
transform (DWT) are used extensively in most image compression applications
(e.g. JPEG,JPEG2000). Audio and video compression also use predictive codecs,
where previously decoded data is used to predict the current data and only the
difference between the predicted and real data is encoded.

For sensor networks, the sensed data of the environment can also be mod-
eled as an image of a temperature, humidity or light map and a standard image
compression technique may be subsequently applied. However, sensor networks
have some distinct features such as limited computation, distributed processing,
degree of correlation and faulty readings, motivating new compression archi-
tectures and techniques tailored to meet their requirements. We briefly review
recent work in the next section.

2.2 Data Compression in Wireless Sensor Networks

In Distributed Source Coding Using Syndromes (DISCUS), Pradhan et al [6]
proposed a framework for distributed compression using joint source and chan-
nel coding. This approach minimizes the amount of inter-node communication
for compression using both a quantized source and correlated side information
within each individual node. While it shows an interesting theoretical approach,
the choice of the correlated side information is essential to the performance of
the algorithm and normally not well known in practice. Unlike this work, we
have clearly verified our approach using real data report from sensors at Intel
Research Lab at Berkeley.

Based on the recent result of Candes and Tao on near optimal signal re-
covery from random projections [10], Rabat et al. [7][8] propose a distributed
matched source-channel communication architecture and reconstruction method
from noisy random projections. A similar approach can be found in [8] which
uses a gossip communication scheme. Although it is claimed to be universal,
there is a trade-off between power-distortion-latency. In addition, they do not
consider the correlation of the data itself.

Several methods have been proposed to use wavelets and their variants in
analyzing and compressing the sensed data [11] [12][13][14]. Ganesan’s DIMEN-
SIONS [11] was one of the first systems addressing multi-resolution data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 T. Dang, N. Bulusu, and W.-c. Feng

access and spatio-temporal pattern mining in a sensor network. In DIMEN-
SIONS, nodes are partitioned into different clusters and organized in a multi-
level hierarchy. Within each cluster, the cluster head performs a two dimensional
wavelet transform and stores the coefficient locally. These coefficients are in turn
passed to the next level in the hierarchy for wavelet transform at a coarser resolu-
tion. While DIMENSIONS shows interesting results, it makes two main assump-
tions that we do not: (i) nodes are distributed in a regular grid and (ii) cluster
heads can always communicate with their parents. Wagner[13][14] proposed an
architecture for distributed wavelet analysis that removes the assumption about
the regularity of the grid. In addition, an algorithm for performing the wavelet
transform by tracing through the path in the minimum spanning tree and per-
forming the wavelet filter along the path is proposed in [12]. It minimizes inter-
node communication by transmitting partial coefficients forward and updating
future sensors until the full coefficients are computed. It implicitly assumes that
the path will be long enough in order to apply wavelet analysis effectively. Fur-
thermore, it is not clear how to choose an optimal path for compression and the
spatial correlation is not fully explored.

Few other works in distributed audio and video compression in wireless sen-
sor networks can be found at [15][16][5]. Other approaches [17][18] try to solve
multiple goals such as routing, aggregation, indexing and storage, and energy
balancing with compression.

Our approach relies only on the sensing data itself. Therefore it does not
make any assumptions about regularity of the network [11] or use any further
information such as geographical location [13][14] or routing path [12]. In addi-
tion, it guarantees the optimal performance of compression algorithms instead
of being universal [10][7][8]. We have also implemented and evaluated our ar-
chitecture using real sensor data to verify that it works within typical sensor
environments. Finally we proposed a resiliency mechanism to ensure a robust
compression architecture in sensor networks.

3 Understanding Data Correlation

One of the main challenges of transformed data compression is to explore the cor-
relation of data in time, space, or frequency domains. Most existing approaches
try to organize sensors into groups based on spatial relationships in order to ob-
tain some correlation of the readings. However, when we observed the readings
over time of 54 sensors deployed at Intel Lab at Berkeley, we found out that
(i) Sensors in similar environmental conditions that are not necessarily spatially
correlated can report correlated data, (ii) Correlation of data may be indepen-
dent from external factors such as sensor location and environmental conditions.
To illustrate these points, consider the spatial graph of the light sensor readings
at night over time as shown in Fig. 1. As you can see, dark areas indicate high
light intensity. Hence, sensors nearby opened windows report high readings due
to the external light. These readings should be similar to those sensors nearby
light sources inside the building. Hence, correlation exists due to the similarity

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 137

Fig. 1. Nodes nearby open windows and under light bulbs reporting similar reading

of environmental factors as well as the sources. Spatial correlation can be seen
as one specific case of this because nearby nodes can have similar condition. The
converse, however, is not always true. In addition, Fig. 2 plots voltage readings
of sensors. Intuitively, nodes with similar power level should be similar over time
regardless of external environmental and spatial factors.

Fig. 2. Correlation of voltage readings is independent of external factors

From these findings, we believe that in order to explore the correlation of
data, we should look at the information contained in the data itself rather than
considering only attribute meta-data such as location and time. Once the under-
lying pattern of the data is found, we can assign nodes with appropriate logical
indices to ensure the best performance of compression algorithms. The following
section describes the information-driven architecture in detail.

4 RIDA: Robust Information-Driven Architecture

4.1 Key Assumptions

We are aware that our approach is only suitable for some types of sensor net-
works, which are characterized by the following assumptions. The network is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 T. Dang, N. Bulusu, and W.-c. Feng

fixed and can be partitioned into clusters. We also assume that the communi-
cation between any two nodes in a cluster takes one hop. This assumption can
be relaxed in a hierarchical network topology. Furthermore, significant changes
in the environment do not occur at high frequency eg. several times a day is
reasonable. In addition, we only consider compression for scalar data. Finally,
we assume the existence of cluster formation and synchronization protocols.

4.2 Overview

The system architecture consists of three main components; information-
driven logical mapping, resiliency mechanism, and compression algorithms. In
information-driven logical mapping, nodes within a cluster exchange their read-
ings over a short period of time. During this period, each node learns the pattern
of data of the whole cluster. A information-based logical mapping is designed
allowing nodes to choose logical indices for themselves. The intuition is that
nodes with correlated data should have logical indices near each other. Several
mapping schemes will be discussed in more detail later.

The resiliency component involves detecting, isolating, and classifying faulty
and missing nodes during the compression and decompression steps. The detail
of this mechanism will be discussed in section 4.5. After the mapping is done,
the data can be processed using logical indices. The compression algorithms
block includes different compression techniques, which can be easily adapted to
the architecture. Section 4.4 outlines the integration of two most popular data
compression algorithms to the architecture. In general, nodes first broadcast
their readings to the cluster so that each node has a snapshot of the data within
each epoch. Individual node performs the data transformation and quantization
itself. The coefficient the node has is the one having the corresponding index as
the logical index. The node only sends its coefficient back to the server if it is
non zero. At the sink or back-end server, original data can be reconstructed by
decompression from the nonzero coefficients, classification of the missing data,
and remapping to physical map of nodes.

4.3 Information-Driven Logical Mapping

The logical mapping gives nodes indices that can be used for data manipula-
tion. This powerful idea keeps the architecture independent from other infor-
mation such as nodes’ locations while still preserving the advantages, such as
data correlation, of having that information. The mapping can be formalized as
follows.

M : (N, Nn) → L
M(d(s), D) = l

Where: L is the logical index space. N is the natural set representing the value
of sensor data. M notates the mapping from a sensor s to a logical index l such
as (x, y) in 2D mapping. It uses only the value of the sensor data d(s) and values

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 139

Fig. 3. Detailed System Architecture

of other sensors in the cluster D to determine l. The mapping can be application
and algorithm specific. As a first step, we simply sort the data and index the
nodes in sequence based on the order of the sorted data.

More specifically, the mapping within a cluster has the following steps. The
cluster head broadcasts a begin−mapping message. Nodes within the cluster send
their sensing data to the cluster head. The cluster head receives data from sensors
for a short period of time. It then analyses the pattern of the data values and does
the mapping accordingly. For example, in 1D sorted mapping, the cluster head
sorts all the data values and sensor ids in ascending order and starts assigning
indices sequentially. Once this step is done, the cluster head broadcasts the map
and waits for all acknowledgements before sending end−mapping, which turns
sensors into normal sensing mode.

4.4 Data Transformation

Various algorithms can be easily integrated with the architecture. We have
adapted the discrete cosine transform, as well as the first and second generations
(lifting scheme) of wavelet transform. Again, depending on the underlying com-
pression algorithm, the logical mapping assigns indices to nodes appropriately.
This ensures the flexibility of the architecture for a wide range of applications.
In addition, since each node only needs to calculate the coefficient corresponding
to its index, it does only the necessary operations. For example, in 2D-DCT, a
node only multiplies the corresponding row and column in the block instead of
doing a matrix calculation for the whole block. Likewise, in DWT, a node with
detail coefficient only needs to run the low pass filter with readings of logically
nearby neighbors. Fig. 4 shows an example of distributed DCT.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 T. Dang, N. Bulusu, and W.-c. Feng

Fig. 4. Pseudo-Code For 2D-DCT

4.5 Error Detection and Classification

Reliability of data is of paramount importance because network nodes fail fre-
quently. Even when nodes have not failed, their operations are typically unstable.
Fig. 5 shows the reading history of 54 sensors in a controlled environment. As ob-
served, 53 out of 54 nodes are working. However, the number of nodes reporting
data is always around 50% within each epoch. Better design of routing protocols
could help increase this rate, but we still have to address the problem of actual
faulty and missing nodes. This motivates us to design a simple mechanism to
distinguish between missing data and real data at the sink.

All the nonzero data will be projected to an interval (for example [128,255]).
The data of different types have different ranges. Although the data value is ob-
tained from the same 10-bit ADC, the ranges of the data are different. Therefore
the projection will unify the way we drop coefficients through quantization or
thresholding. Missing readings will be set to zero. Hence, we have a set of data
from [128,255] for normal data and 0 for missing data of all different scalar types
like temperature, humidity, light and voltage. These zero values would result in
low values in the reconstructed data. Hence, we can use a threshold to classify
them. The threshold we used is 64 which has been shown to classify correctly
most of the time. Obviously, there is an inherent trade-off in the ability to detect
missing readings and the decompression error.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 141

Fig. 5. Reading history over one hour period

Fig. 6. Resiliency Mechanism

5 Experimental Design and Analysis

This section describes how the experiments are setup to evaluate the architecture
and discusses the results.

5.1 Goals and Metrics

The goals of the experiments in this section are four-fold.

– To understand how flexibly the information-driven architecture can adapt
to different underlying algorithms, specifically compression algorithms.

– To understand how different compression algorithms perform on real sensor
data with different logical mapping schemes.

– To understand how robust the architecture is to missing sensor data and
failures using our proposed resiliency mechanism.

– To understand how much energy and bandwidth is saved in a typical multi
hop network using our approach.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 T. Dang, N. Bulusu, and W.-c. Feng

To evaluate the first goal, we will show that different compression algorithms
such as DCT and DWT can be made distributed and integrated with the archi-
tecture. The system only needs to change the logical mapping scheme to apply
the underlying algorithms.

The second goal is analyzed by observing the tradeoff between compression
ratio and normalized mean squared error (MSE) of the compression algorithms
using different mapping schemes. We used two main compression algorithms,
DCT and DWT, and two simple mapping schemes, one dimensional ordered
and two dimensional ordered mappings. Ideally, we aim for a configuration that
results in high compression ratios with low normalized MSE.

To evaluate the third goal, we consider the accuracy and recall of the classi-
fication step against the number of faulty nodes. They can be calculated as:

accuracy = TP+TN
totalnumberofnodes

recall = TP
totalnumberofhealthynodes

where:

– TP-True Positive : Number of correctly classified healthy nodes
– TN-True Negative : Number of correctly classified faulty nodes

Therefore accuracy indicates how well the system can correctly classify healthy
and faulty nodes, while recall represents the portion of correctly classified nodes
in the set of nodes classified as healthy. Ideally, we wish to see the values of both
accuracy and recall as close to 100% as possible.

Finally, we evaluated the energy consumption using PowerTOSSIM. The com-
pression algorithm is implemented for the MicaZ platform and simulated in Pow-
erTOSSIM. The energy consumption can be observed separately by measuring
CPU operations and RF transmission. In order to understand how much energy
is saved by doing compression in multihop networks, we use the following bench
mark.

cb = n(tx + tr)h
cc = n(tx + tr + d) + n′h(tr + tx)

Where
cb is the cost to transmit raw data back to the server.
cc is the cost to transmit data back to the server using compression.
n is the cluster size. In the case of missing sensors, n is the number of healthy
nodes.
h is the average hop count.
tr, tx are transmitting and receiving power for one package.
d is the cost to compress the data.
n′ is the number of non-zero coefficients. n/n′ is aproximately 20:1 for jpeg.

The energy saving is:

rh =
cb − cc

cb
=

n(tx + tr)h − n(tx + tr + d) − n′h(tr + tx)
n(tx + tr)h

(1)

In the above equations, we do not consider the cost for mapping. However, as
we have assumed previously that the frequency of changes in the environment is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 143

low, the mapping cost overall is negligible in comparison to the cost of collecting
data. In addition, we only consider energy saving for one cluster because the
percentage of energy saving in a fixed diameter network is independent of the
number of clusters and determined by the hop count. Finally, we also assume
there is no transmission loss for compressed data. However, one can expect that
because less data is transmitted in the network, the transmission loss is smaller.
Hence, in real world applications, we expect to see slightly higher error when
loss in transmitting compressed data occurs.

5.2 Experimental Design

The experiments are designed based on the data collected from 54 sensors be-
tween February 28th and April 5th, 2004, which has been made available by Intel
Berkeley Research Lab [19]. As discussed in the previous section, the number of
sensors reporting data within each epoch is only around 50%. Hence, we decided
to design two sets of experiments with two sets of data respectively.

The purpose of the first experiment set is to evaluate how different compres-
sion algorithms such as DCT and DWT perform on the real data. It also analyzes
different to the mapping schemes such as 1D versus 2D and how robust the sys-
tem is to the number of missing nodes. The raw data set has its missing values
filled in via interpolation to create a complete data set. Thus, it creates an ideal
sensor network data set, where every node reports readings within each epoch. In
order to evaluate how robust the system is against node failures, we randomly
insert faulty readings as zero values and perform the classification during the
reconstruction phase.

The second set of experiments is to evaluate our approach on the real raw
data without any interpolation. This set of data, as you can see from Fig. 5, has
about 50% of its readings missing within each epoch. However, our experiments
show that the system still achieves a reasonable compression ratio with low error
and high detection rate.

5.3 Results and Analysis

Logical Mapping Schemes. This section discusses several findings on differ-
ent logical mapping schemes. Basically, there are two logical mapping schemes,
1D content-based and 2D content based mappings, where the data is sorted and
indices are assigned based on the order of the data values reported by the sen-
sors. These two mappings are evaluated against two location-based mappings
where indices are assigned based on geographical relationships. Nodes which
are close together have nearby indices in the block. As we can see in Fig. 7,
DCT compression using information-based mappings outperforms those using
location-based mappings. With the same compression ratio of 20:1, DCT com-
pression using information-based mappings has a normalized MSE 50% less than
location-based mappings. In addition, the 1D transform also gives lower errors
in comparison to 2D transform. The normalized MSE is reduced by 30% if we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 T. Dang, N. Bulusu, and W.-c. Feng

Fig. 7. Location-based mapping versus Content-based mapping and 1D versus 2D
Transform

use information-based mappings for voltage. The graph for temperature shows
a transition when the compression ratio reaches 25. This is reasonable, because
the data set has 49 nodes, so ideally a compression of lower than 25:1 should be
considered. Compression ratios of over 25 mean that only one coefficient is left.
Therefore, it would be pointless to compare those. This result is even clearer
with wavelet transform. One limitation of the 2D transform is that the number
of nodes within a cluster must be a square number. Clustering formation is a
complex research area and so far no prior work has attempted to constrain the
number of nodes in a cluster. In addition, due to the limit on number of nodes
within a cluster, we would recommend compression should use 1D mappings.

DCT-based and Wavelet-based Compression. The wavelet-based com-
pression in general shows much lower error that DCT-based compression. While
the DCT-based approach shows an error of around 9%, the Wavelet-based ap-
proach has an error of only 3%, which is 67% less. However, due to the limit
on the length of the data, wavelets with a high number of coefficients can start
to diverge much sooner although they have a lower error with the same small
compression ratio.

Fig. 8. DCT-based vs Wavelet-based Compression

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 145

Error Detection and Classification. By the term faulty node, we mean
to describe a node that sends odd data or no data at all. This is similar to a
missing node, where the node is missing and does not send any data. Hence, we
use the term faulty for both. Faulty data is randomly inserted into the data set
before compression. The non-zero data is scaled to the [128,255] interval and we
use a threshold of 64 to classify faulty data in both cases. When the number

Fig. 9. Compression Performance on Temperature Readings

of faulty nodes increases from 1 to 30, DCT-based compression error increased
dramatically from 6% to 45%. But it becomes stable around 45% when the
number of faulty nodes reaches above 10. Likewise, the error in wavelet-based
approach only slightly increases from 2% to 4%. The compression ratio also
decreases gradually from 10:1 to 3:1. This is reasonable because the nature of
DCT-based transform is suitable for a smooth signal whereas Wavelet-based
transform is more suitable with piecewise constant data. To our surprise, both

Fig. 10. Classification Accuracy and Recall on Temperature Readings

DCT and Wavelet have very high accuracy and recall rates even when more than
half the network is faulty. Haar wavelets can maintain a performance of up to
97% for both accuracy and recall. DCT is slightly lower but, still above 90%
for accuracy and 97% for recall. Both of these values decrease gradually as the
number of faulty nodes in the network increases. Similar results can be seen for
other types of data such as humidity and voltage.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 T. Dang, N. Bulusu, and W.-c. Feng

Fig. 11. Compression Performance on Raw Humidity Readings

Performance on Raw Data. The data was collected using TinyDB, which
queries data among sensors at the same time. However, collected data has a
latency and dropping rate. One way to improve it is to design better routing
and data aggregation protocols. However, these are still in development. Hence,
we applied our system to this real set of data. Surprisingly, we still get the desired
results. A compression ratio of 3:1 can be achieved for both DCT and Wavelet
with an error less than 5% as shown in Fig. 11. Moreover, around 90% of nodes
are still correctly classified and the recall rate is as high as 98%. In both cases,
wavelet performs 3% better than DCT as shown in Fig. 12.

Fig. 12. Classification Accuracy and Recall on Raw Humidity Readings

Energy Consumption. As mentioned at the beginning of the paper, one main
purpose of data compression is to conserve energy and bandwidth. We have
shown how our system can enable various compression algorithms and save a
large amount of bandwidth by logically processing the data and sending only a
few non-zero coefficients. We also state that the CPU operations consume much
less energy than RF transmission. Indeed, Fig. 13 shows that the total energy
consumed by the CPU operations including all normal activities and DCT trans-
form is still only 2.5 times less than that of one RF transmission within each
epoch. Hence, for multihop networks where the number of RF retransmissions

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 147

Fig. 13. Energy consumption of RF vs CPU

is several times higher, our approach can be expected to save not only a large
amount of bandwidth but also a significant amount of energy. Applying Eq. 1, we
can know how much energy is saved for multihop networks as shown in Fig. 13.
We have seen that different compression algorithms can be easily adapted to
our architecture. Moreover, with the introduction of logical mapping, optimal
performance can be simply tuned for different applications. In general, due to
the limit on the number of nodes within a cluster, 1D mapping and transforma-
tion normally gives better performance than 2D mapping and transformation. In
addition, Wavelet-based compression gives a lower error bound than DCT-based
compression. It is surprising that the wavelet lifting scheme did not perform as
well as expected. One of the reasons may once again be the limited length of the
signal or the number of nodes within a cluster, correspondingly. Another surprise
was that with our resiliency mechanism, the compression system becomes very
robust even when half of the cluster is missing. Finally, although DCT transform
and wavelet transform require an average amount of work load for Micaz class
sensors, we still see that the energy saved by reducing the number of RF trans-
missions to CPU operations is 2.5. For an average 3-hop network, the energy can
be saved by 30%. This ratio will be much higher in multihop networks where
the number of RF retransmissions is proportional to the number of hops.

6 Conclusion and Future Work

In conclusion, we have presented RIDA, a novel distributed information-driven
architecture for data compression for irregular sensor networks. The key idea is
to assign the sensor nodes with logical indices based on the content of the data
they report in order to optimally explore the correlation of the sensor data. This
approach moves beyond conventional approaches, which have explored how to
improve data compression by only exploiting spatial and temporal correlation.
We have implemented and evaluated various popular data compression tech-
niques such as DCT-based, Wavelet-based to the architecture. In addition, we
also presented a simple method for detecting and classifying faulty nodes. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 T. Dang, N. Bulusu, and W.-c. Feng

experimental results on real data show that our architecture can enable high
compression ratios, low error and high robustness to faults.

Our current approach is limited to scalar data for environmental monitoring
with low changing frequency. We also rely on the clustering structure and assume
that the network is fixed. In the future, we would like to investigate further how
this approach can be extended to meet the requirements for high rate data
compression such as audio and images. Moreover, we would like to consider how
it can be adapted to a network of mobile sensors. In addition, we would like to
further study several factors that affect compression algorithms such as cluster
size, quantization schemes, projection ranges and energy balancing as well as the
tradeoff between compression and fault tolerance in sensor networks.

Acknowledgements

The research described in this paper was supported by National Science Foun-
dation grants NSF 05-14818 and 01-21475.

References

1. Madden, S., J.Franklin, M., Hellerstein, J., Hong, W.: Tinydb: An acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1)
(2005) 122–173

2. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. In: OSDI. (2002)

3. Donoho, D.L.: Compressed sensing. In: IEEE Transactions on Information Theory.
Volume 52. (2006) 1289–1306

4. Duarte, M.F., Wakin, M.B., Baron, D., Baraniuk, R.G.: Universal distributed sens-
ing via random projections. In: Proceedings of IPSN 2006, Nashville, Tennessee,
USA, April 19-21, 2006. (2006) 177–185

5. Gehrig, N., Dragotti, P.L.: Distributed sampling and compression of scenes with
finite rate of innovation in camera sensor networks. In: Proceedings of Data Com-
pression Conference, Snowbird, Utah (2006) 83–92

6. Pradhan, S.S., Kusuma, J., Ramchandran, K.: Distributed compression in a dense
micro-sensor network. In: IEEE Signal Processing. Volume 19. (2002) 51–60

7. Rabbat, M., Haupt, J., Singh, A., Nowak, R.D.: Decentralized compression and
predistribution via randomized gossiping. In: Proceedings of IPSN 2006, Nashville,
Tennessee, USA, April 19-21, 2006. (2006) 51–59

8. Bajwa, W.U.Z., Haupt, J., Sayeed, A.M., Nowak, R.D.: Compressive wireless sens-
ing. In: Proceedings of IPSN 2006, Nashville, Tennessee, USA, April 19-21, 2006.
(2006) 134–142

9. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained
devices in delay tolerant networks. In: Proccedings of ACM Sensys, Boulder, Col-
orado (2006)

10. Candes, E., Tao, T.: Near optimal signal recovery from random projections: uni-
versal encoding stratergies? In: preprint. (2004)

11. Ganesan, D., Estrin, D., Heidemann, J.: Dimensions: Why do we need a new data
handling architecture for sensor networks. (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

RIDA: A Robust Information-Driven Data Compression Architecture 149

12. Ciancio, A., Ortega, A.: A distributed wavelet compression algorithm for wireless
multihop sensor networks using lifting. In: Proceedings of ICASSP, (Philadelphia,
PA)

13. Wagner, R., Choi, H., Baraniuk, R., Delouille, V.: Distributed Wavelet Trans-
form for Irregular Sensor Network Grids. In: IEEE Workshop on Statistical Signal
Processing (SSP), Bordeaux, France (2005)

14. Wagner, R.S., Baraniuk, R.G., Du, S., Johnson, D.B., Cohen, A.: An architecture
for distributed wavelet analysis and processing in sensor networks. In: Proceedings
of IPSN 2006, Nashville, Tennessee, USA, April 19-21, 2006. (2006) 243–250

15. Roy, O., Vetterli, M.: Distributed Compression in Acoustic Sensor Networks Using
Oversampled A/D Conversion. In: IEEE International Conference on Acoustic,
Speech and Signal Processing (ICASSP). Volume 4. (2006) 165–168

16. Gehrig, N., Dragotti, P.L.: Distributed compression in camera sensor networks. In:
Proceeding of MMSP, Siena, Italy (2004)

17. A, S.: Routing and data compression in sensor networks: Stochastic models for
sensor data that guarantee scalability. In: Proccedings of ISIT2003, Yokohama,
Japan (2003)

18. Petrovic, D., Shah, R.C., Ramchandran, K., Rabaey, J.: Data funneling: routing
with aggregation and compression for wireless sensor networks. In: Proceedings of
SNPA 2003, Seattle, WA (2003) 156–162

19. Lab, I.B.R.: (http://db.lcs.mit.edu/labdata/labdata.html)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network
Using Gibbs Sampling

Yongjun Li, Wandong Cai, Guangli Tian, and Wei Wang

School of Computer Science, Northwestern Polytechnical University,
Xi’an 710072, P.R. China
liyongjunxa@hotmail.com

Abstract. The internal link performance inference has become an in-
creasingly important issue in operating and evaluating a sensor network.
Since it is usually impractical to directly monitor each node or link in the
wireless sensor network, we consider the problem of inferring the inter-
nal link loss characteristics from passive end-to-end measurement in this
paper. Specifically, the link loss performance inference based on the data
aggregation is considered. Under the assumptions that the link losses are
mutually independent, we formulate the problem of link loss estimation
as a Bayesian inference problem and propose a Markov Chain Monte
Carlo algorithm to solve it. Through the simulation, we can safely reach
the conclusion that the internal link loss rate can be inferred accurately,
comparable to the sampled internal link loss rate, and the simulation
also shows that the proposed algorithm scales well according to the sen-
sor network size.

1 Introduction

Recent technological advances have made the development of low cost sensor
nodes possible, and this allows the deployment of the large-scale sensor network
to be feasible. The accurate network performance plays an important role in the
successful design, deployment and management of sensor networks. However, the
inherent stringent bandwidth and energy constraints of sensors create challeng-
ing problems in the network performance measurement. It is usually impractical
to collect sensor network performance statistical data from each sensor node and
process it at the sink node.

Motivated by the needs of accurate sensor network performance measurement
and the inherent constraint of sensor network, in this paper, we concentrate on
the problem of efficiently estimating the internal link loss rate from the passive
end-to-end measurement. Particularly, we attempt to estimate the internal link
loss rate based on the data aggregation communication paradigm. To determine
the loss performance from network edge measurement, a probability model is
normally selected to describe the loss characteristic of a link with some or all
parameters undetermined. Network tomography is a promising approach pro-
posed in recently years, which investigates the methods and methodologies to
identify those parameters from end-to-end measurements.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 150–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling 151

In this paper, we use the Bayesian inference problem to formulate the sensor
network loss inference problem and use the Gibbs Sampling to find out link-
level characteristics. The Bayesian network is an active research area by itself
that has been producing various methods to overcome the limitation of classical
maximum likelihood estimator (MLE), such as sparse data and overfitting. In
addition, many stochastic approximation methods, e.g. Markov Chain Monte
Carlo (MCMC) and bound and collapse, have been developed for fast conver-
gence, which makes it a competitor to classic MLE. The Gibbs Sampling is
a technique for generating Markov Chain whose values converge to the target
distribution, without having to calculate the density. Most of applications of
the Gibbs Sampling have been in Bayesian models. Recent research makes the
Bayesian network an ideal method to systematically discover hidden or missing
information. Thus, using the data collected from data aggregation communica-
tion paradigm, the Bayesian Network can infer link-level characteristic. [3]

We used the NS2 to simulate a sensor network based on data aggregation
communication paradigm. In the process of data aggregation, a subset of nodes
in the sensor network attempt to forward the sensor data they have collected to
a sink node via a reverse data aggregation tree. Before a node sends its data to
the next node in the path to the sink, it waits to receive data from its entire
child nodes in the reverse data aggregation tree or until a specified period of
time has elapsed. The node then aggregates its own data with the data it has
received from its child nodes, and forwards this aggregated data to the sink
via the aggregation tree. Information about which nodes’ data is present in the
aggregated data must also be sent to the sink. By collecting the arrivals of the
aggregated data and using the Bayesian network to infer the link loss rate, we
found that the inferred results was very close to the true values. This reveals the
feasibility and accuracy of our proposed approach.

The rest of this paper is organized as follows. In Section 2, we focus on the
related work. The data aggregation tree model and the loss model are described
in Section 3. We then introduce the proposed loss inference in section 4 that
cover the details of our proposed algorithm. The simulation result inferred by
the proposed inference approach is discussed in Section 5. Section 6 concludes
the paper.

2 Related Work

There has been much research in the field of network tomography for the wired
network. A summary of this research is provided in [1]. Zhu et al [2] proposed
an internal link loss inference method for wired network based on Bayesian
Network, and use Expectation-Maximization (EM) algorithm to solve it. The
simulation shows the feasibility and accuracy of this approach. Dong Guo et al
[3][4] also proposed a Bayesian inference of wired network loss. The problems
of the link loss inference in a wired network based on end-to-end measurements
were formulate as Bayesian inference problems and develop several Markov Chain

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 Y. Li et al.

Monte Carlo algorithms to solve them. Using this approach can obtain good
agreements between the theoretical results and the inferred results.

There has also been much research in the dissemination and propagation of
data in wireless sensor networks. The reader is referred to [5] and [6] for discus-
sions of some of the dissemination and propagation techniques proposed. How-
ever, there has been little research in the wireless sensor network tomography.
G. Hartl et al [7] formulate loss inference as a Maximum-Likelihood Estima-
tion (MLE) problem and infer the loss rate using the Expectation-Maximization
(EM) algorithm. Mao et al [8] employ the Factor Graph to solve the internal
link loss inference. The proposed algorithm iteratively updates the estimates of
link losses upon receiving recently sent packets by the sensors. Jerry Zhao et
al [9][10][11] proposed sensor network topography to construct abstracted scans
of sensor network health by applying localized algorithms in sensor network for
energy-efficient in-network aggregation of local representations of scans. Rather
than collect detailed state information from each individual sensor node and
then process centrally, this technique builds a composite san by combining local
scans piecewise on their way towards the sink node. Meng Xiaoqiao et al [12] pro-
posed an efficient data-collection scheme that can be used for event monitoring
or network-wide diagnosis. Their scheme relies on the well-known representation
of data-contour maps, which trade off accuracy with the amount of samples.
They used three novel algorithms to build contour maps: distributed spatial and
temporal data suppression, contour reconstruction at the sink via interpolation
and smoothing, and an efficient mechanism to convey routing information over
multiple hops. By reducing the number of transmissions, this scheme can improve
network lifetime.

3 System Model

In this section, we present the network model and loss model that are used
throughout this paper.

3.1 Network Model

Let T = (V, L) denote a reverse aggregation tree with the node set V and link
set L. In the T , the root node is the sink node denoted by s. Let a sensor network
consist of n internal nodes. The link set, L, contains ordered pairs (i, j) ∈ V ×V
such that node i sends its data, destined for the sink, directly to node j. The
link (i, j) ∈ L is simply denoted by link i. The path from the internal node i
to the sink node s is denoted by path i. Let d(i) denote the children set of the
node i. That is d(i) = {k ∈ V |(k, i) ∈ L}. Each non-root node i has a unique
parent node f(i). Any node on the path i is referred to as an ancestor of i. Let
a(i) denote the ancestor set of i.

It is assumed that the topology of the reverse multicast tree is known and
remains relatively static. This is a reasonable assumption even if the topology is
not known a priori since it is also possible to infer the topology of a network using

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling 153

end-to-end measurements. This process has been presented in many papers. (e.g.
[1] and [13])

3.2 Loss Model

We begin this subsection with the similar description of the loss model as
presented in [7][8]. Suppose the link losses are mutually independent and the
Bernoulli model is adopted in this paper. The flow of data through a reverse
aggregation tree is modeled by a stochastic process Z = {zi,j, i ∈ V, j ∈ a(i)},
where each zi,j ∈ {0, 1}.

zi,j =
{

1 the data sent from node i was successfully received by node j
0 otherwise

In the data aggregation paradigm, the intermediate node j aggregates its data
with that of all its children before sending it to the sink. Information about which
nodes’ data is present in the aggregated data must also be sent to the sink. From
this nature of the data aggregation, we can reach the following conclusion:

− if zi,j = 0, we have zk,j = 0, ∀k ∈ d(i).
− if zk,j = 1, ∃k ∈ d(i), we have zi,j = 1.

The probability that the aggregated data is lost on the link i is described as
p[zi,f(i) = 0|zd(i),i = 1] = θi. Θ = {θ1, θ2, ..., θn}is an n-element vector, and each
element for one link, which is the parameters to be determined by statistical
inference.

Consider the collection of data by the sink to be an experiment. Each round
of data collection will be considered a trial within this experiment. Suppose each
node tries to send data in each round. The outcome of each trial will be a record
of which nodes the sink received data from in that round. We use a Boolean
variable x

(m)
k to denote the outcome of the node k in mth round, where

x
(m)
k =

{
1 if zk,s = 1 in the mth round data collection
0 otherwise

For N trials, the 0-1 sequences maintained in the sink node for node k are
denoted by Xk = {x

(m)
k , 1 ≤ m ≤ N}, k ∈ V. Let X(m) = {x

(m)
k , k ∈ V }. In

addition, we denote the unobservable data as Y = Z \ {Xk}, then yi,j = zi,j , for
each i, j.

4 Loss Inferences

In this section, we firstly formulate the loss rate inference in wireless sensor
network. Then the proposed approach is presented in subsection 4.2. Finally, we
present the proposed inference algorithm in detail.

4.1 Problem Formulation

After each trial is finished, we will obtain a trial outcome at the sink node. The
proposed statistical inference is used here to estimate the loss rate from these

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 Y. Li et al.

outcomes, in particular for those links that cannot be observed directly. Each
outcome collected at the sink node corresponds to a set of joint probabilities that
lead to the outcome. Take the Fig. 1 for instance, when an outcome X(m) =
{x

(m)
2 = 0, x

(m)
3 = 1} is collected, we have the joint probability p[X(m); Θ] =

(1 − θ1) θ2 (1 − θ3) . If an outcome X(m) = {x
(m)
2 = 0, x

(m)
3 = 0} is obtained, the

joint probability turns to p[X(m); Θ] = θ1 + (1 − θ1) θ2θ3.

s

1

2 3

4 5 6 7 98

Fig. 1. A simple data aggregation tree

In general, given the loss model and tree structure, we can construct joint
probabilities from outcomes as shown in the above example. With a large num-
ber of trials, the proposed approach aims to identify the unknown parameters
embedded in the joint probabilities. Let the experiment consist of N trials. For
each possible outcome X(m) ∈ Ω = {0, 1}n−1, let n(x) denote the number of
data collection rounds for which x is the outcome. The probability of observa-
tions X = {X(1), X(2), ..., X(N)} in N trials is given as follows:

p
(
X(1), X(2), ..., X(N)

)
=

N∏
m=1

p(X(m); Θ) =
∏
x∈Φ

p(x; Θ)n(x).

The proposed loss inference approach aims to make a Bayesian inference to
obtain the estimated value Θ̂ = {θ̂1, θ̂2, ..., θ̂n} of link loss rate Θ based on the
observations X , which amounts to making inference with respect to the posterior
density p(Θ|X).

4.2 Loss Inference Using Gibbs Sampling

In accordance with the correlation among the links introduced by the data ag-
gregation communication paradigm, the statistical inference is used to infer the
loss rate of those links from the statistical data. In this paper, our proposed
approach is based on the Markov Chain Monte Carlo method and the Gibbs
Sampler. In order to implement a Gibbs Sampler for this problem, we assign
Beta priors to the link loss rate as described in [3] and [4].

θi ∼ Beta (ai, bi) =
Γ (ai + bi)
Γ (ai) Γ (bi)

θai−1
i (1 − θi)

bi−1
i = 1, 2, ..., n (1)

where the parameters (ai, bi) of Beta priors can be obtained by the estimation
method of moments according to the measurements.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling 155

For the sake of clarity of presentation, we first illustrate our approach by using
a simple example network as shown in Fig. 2.

s

1

2 3 4

Fig. 2. Simple example network for loss inference

There are 5 nodes connected by 4 links in this network. These links are named
1,2,3 and 4 respectively. Nodes 2, 3 and 4 attempt to forward the sensor data
they have collected to node 1. After node 1 has received data from its entire child
nodes or until a specified period of time has elapsed. Node 1 then aggregates
its own data with data it has received from its child nodes, and forwards the
aggregated data to the sink node s. By collecting the arrivals of the aggregated
data at the sink node, we can obtain the information about which nodes’ data is
present in the aggregated data, denoted by X . Suppose the experiment consist
of N trials. The loss rate of the four links are θ1, θ2, θ3 and θ4. We are interested
in inferring the Θ = {θ1, θ2, θ3, θ4} based on the collected data X . According to
the relationship between the links, we have

p(Θ, Y, X) ∝
N∏

m=1

p
(
x

(m)
2 |Y, Θ

)
p

(
x

(m)
3 |Y, Θ

)
p

(
x

(m)
4 |Y, Θ

)
p (Y, Θ)

=

[
N∏

m=1

p
(
x

(m)
2 |y(m)

2,1 , θ1

)
p

(
x

(m)
3 |y(m)

3,1 , θ1

)
p

(
x

(m)
4 |y(m)

4,1 , θ1

)]

[
N∏

m=1

p
(
y
(m)
2,1 |θ2

)
p

(
y
(m)
3,1 |θ3

)
p

(
y
(m)
4,1 |θ4

)]

p (θ1) p (θ2) p (θ3) p (θ4) (2)

where

p
(
x

(m)
k |y(m)

k,1 , θ1

)
= θ

1−x
(m)
k

1 (1 − θ1)
x
(m)
k y

(m)
k,1 +

(
1 − x

(m)
k

)(
1 − y

(m)
k,1

)
(3)

= θ
y
(m)
k,1

(
1−x

(m)
k

)
1 (1 − θ1)

x
(m)
k y

(m)
k,1 k = 2, 3, 4

and

p
(
y
(m)
k,1 |θk

)
= θk

(
1 − y

(m)
k,1

)
+ (1 − θk) y

(m)
k,1 (4)

= θ
1−y

(m)
k,1

k (1 − θk)y
(m)
k,1 k = 2, 3, 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 Y. Li et al.

Substituting (1), (3) and (4) into (2), then we have

p (Θ, Y, X) ∝
[

N∏
m=1

θ
y
(m)
2,1

(
1−x

(m)
2

)
1 θ

y
(m)
3,1

(
1−x

(m)
3

)
1 θ

y
(m)
4,1

(
1−x

(m)
4

)
1

]
(5)

[
N∏

m=1

(1 − θ1)
x
(m)
2 y

(m)
2,1 (1 − θ1)

x
(m)
3 y

(m)
3,1 (1 − θ1)

x
(m)
4 y

(m)
4,1

]

[
N∏

m=1

θ
1−y

(m)
2,1

2 (1 − θ2)
y
(m)
2,1 θ

1−y
(m)
3,1

3 (1 − θ3)
y
(m)
3,1

θ
1−y

(m)
4,1

4 (1 − θ4)
y
(m)
4,1

]
· p (θ1) p (θ2) p (θ3) p (θ4)

=

⎡
⎢⎢⎢⎣θ

a1−1+

N∑
m=1

[
y
(m)
2,1

(
1−x

(m)
2

)
+y

(m)
3,1

(
1−x

(m)
3

)
+y

(m)
4,1

(
1−x

(m)
4

)]

1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣(1 − θ1)

b1−1+

N∑
m=1

(
x
(m)
2 y

(m)
2,1 +x

(m)
3 y

(m)
3,1 +x

(m)
4 y

(m)
4,1

)⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣θ

a2−1+

N∑
m=1

(
1−y

(m)
2,1

)

2 (1 − θ2)
b2−1+

N∑
m=1

y
(m)
2,1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣θ

a3−1+

N∑
m=1

(
1−y

(m)
3,1

)

3 (1 − θ3)
b3−1+

N∑
m=1

y
(m)
3,1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣θ

a4−1+

N∑
m=1

(
1−y

(m)
4,1

)

4 (1 − θ4)
b4−1+

N∑
m=1

y
(m)
4,1

⎤
⎥⎥⎥⎦

According to the equation (5), we can easily reach the conclusion that the con-
ditional posterior distributions of link loss rates are still Beta. These conditional
posterior distributions are given as following:

p (θ2|Y, X, θ1, θ3, θ4) ∼ Beta(a2 +
N∑

m=1

(
1 − y

(m)
2,1

)
, b2 +

N∑
m=1

y
(m)
2,1) (6)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling 157

p (θ3|Y, X, θ1, θ2, θ4) ∼ Beta(a3 +
N∑

m=1

(
1 − y

(m)
3,1

)
, b3 +

N∑
m=1

y
(m)
3,1) (7)

p (θ4|Y, X, θ1, θ2, θ3) ∼ Beta(a4 +
N∑

m=1

(
1 − y

(m)
4,1

)
, b4 +

N∑
m=1

y
(m)
4,1) (8)

p (θ1|Y, X, θ2, θ3, θ4) ∼ Beta

(
a1 +

N∑
m=1

[
y
(m)
2,1

(
1 − x

(m)
2

)
+ (9)

y
(m)
3,1

(
1 − x

(m)
3

)
+ y

(m)
4,1

(
1 − x

(m)
4

)]
,

b1 +
N∑

m=1

(
x

(m)
2 y

(m)
2,1 + x

(m)
3 y

(m)
3,1 + x

(m)
4 y

(m)
4,1

))

In addition, the conditional posterior distributions of the unobservable data
of the internal nodes are given by

p
(
y
(m)
k,1 = 0|x(m)

k , Θ
)

= p
(
y
(m)
k,1 = 0|x(m)

k , θk, θ1

)
(10)

∝ p
(
x

(m)
k |y(m)

k,1 = 0, θ1

)
p

(
y
(m)
k,1 = 0|θk

)

=
(
1 − x

(m)
k

)
θk k = 2, 3, 4

p
(
y
(m)
k,1 = 1|x(m)

k , Θ
)

= p
(
y
(m)
k,1 = 1|x(m)

k , θk, θ1

)
(11)

∝ p
(
x

(m)
k |y(m)

k,1 = 1, θ1

)
p

(
y
(m)
k,1 = 1|θk

)

= θ

(
1−x

(m)
k

)
1 (1 − θ1)

x
(m)
k (1 − θk) k = 2, 3, 4.

The Gibbs sampler iteratively draws random samples of {θ1, {θk, yk,1, k =
2, 3, 4}} from the conditional marginal posterior densities (6) ∼ (11). When
the sample procedure is finished, we can calculate the estimated value of Θ̂ =(
θ̂1, θ̂2, θ̂3, θ̂4

)
. For a general sensor network, we can similarly infer link loss rate

as in this simple example described above, and expand the sampling strategy as
an up-bottom approach where we start from the child node of the sink node,
followed by their child nodes, and so on, until we reach the leaf nodes.

4.3 Algorithm Description

By extending the simple example described in subsection 4.2 to a general wireless
sensor network, we have the following algorithm for sample from joint posterior

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 Y. Li et al.

density p (Θ, Y |X). Suppose the total number of samples is J = J0 + J1, where
J0 is the number of samples as ‘burn-in’ period and J1 is the number of samples
used to infer loss rate. Denote Θ(i) and Y (i) as the ith round sample value.

Initialization: Draw random samples Θ(0) and Y (0) from their perior.
Sample: for j = 1, 2, ..., J do

− Given Y (j−1), for k ∈ V \ {s}, draw a sample
θ
(j)
k ∼ p

(
θk|X,

(
Yd(k),k

)(j−1)
)

where d(k) �= Φ

θ
(j)
k ∼ p

(
θk|

(
Yk,f(k)

)(j−1)
)

where d(k) �= Φ

− Given Θ(j), for k ∈ V \ {s}, for m = 1, 2, ..., N, draw a sample(
y
(m)
k,f(k)

)(j)
∼ p

(
y
(m)
k,f(k)|θ

(j)
k ,

(
y
(m)
f(k),f(f(k))

)(j)
)

Inference: Calculate Θ̂ from {Θ(J0+1), Θ(J0+2), ..., Θ(J)}
Output: Θ̂.

5 Simulation Study

We used the ns2 network simulator program to perform the simulation of the sen-
sor network. The ns2 simulator was extended to simulate the data flow through
sensor network. For each data collection round, whether a node successfully re-
ceived data sent to it by its child nodes was determined randomly but with a
specified intended loss rate for each link. That is, as the number of data col-
lection rounds increases the actual loss rate of each link should converge to the
intended loss rate. The inference algorithm is implemented in MATLAB.

Two networks were used in the simulations. One consisted of 120 nodes while
the other contained 10 nodes. Figure 1 shows the topology of the 10-node net-
work. An intended success rate of 0.9 was chosen for all normally links in the
simulation network. Each simulation consisted of 1200 data collection trials.
Once all of the data was collected, each link loss rate was inferred using the
approach presented in Section 4. To estimate the loss rate, we set the num-
ber of samples as ‘burn-in’ period J0 to be 400, and the number of samples J
to be 800.

In the 10-node simulation network, we simulated two possible scenarios that
may occur in a real sensor network. These scenarios were: 1) Equal losses through-
out the network; 2) Heavy losses at some links. The second scenario was simu-
lated by setting the intended success rates of links 2, 5 and 7 to be 0.7.

Two plots of the inferred and sampled internal link loss rate for all links are
shown in Fig.3 and Fig. 4, respectively. We can reach the conclusion that the
inferred link loss rate is very close to the sampled link loss rate. In the second
scenario the error was significant since some of the losses that should have been
attributed to link 2 were instead attributed evenly amongst link 2’s child links.
However, it is still possible to infer that these lossy links is in fact experiencing
the heavy losses.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling 159

Fig. 3. Sampled Loss Rate vs. Inferred Loss Rate in the equal loss scenarios

Fig. 4. Sampled Loss Rate vs. Inferred Loss Rate in the heavy loss scenarios

In addition, 100 experiments are used to infer the mean loss rate for each
scenario. Two plots of the inferred and sampled internal link mean loss rate
for all links are shown in Fig.5 and Fig. 6, respectively. These plots show that
the inferred link mean loss rate is much closer to the sampled link loss rate. The
same situation occurs in the second scenario as shown in Fig.4, but the difference
between the sampled values and the inferred values becomes smaller.

Fig. 5. Sampled Mean Loss Rate vs. Inferred Mean Loss Rate in the equal loss scenarios

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 Y. Li et al.

Fig. 6. Sampled Mean Loss Rate vs. Inferred Mean Loss Rate in the heavy loss
scenarios

Take the link 2 for instance. Figure 7 shows the relationship between the
convergence speeds of the estimated receipt rate and the number of samples.
Before the burn-in period was over, the error between the estimated value and
the true value is significant. With the sample number increases, the estimated
value is approaching to the true value.

Fig. 7. Inferred Value vs. Sample Number in equal loss scenarios for link 2

Table1 provides the simulation result in 120-node network. It shows that the
inferred loss rate is close to its true value. In the two simulation scenarios, the
maximum error of link loss estimation is only 0.027 and 0.0312, respectively.
These results show that our loss rate inference algorithm scales well.

Table 1. Absolute errors: 120-node network

Equal losses Mean Error 0.0097
Max Error 0.0270

Heavy losses on some links Mean Error 0.0102
Max Error 0.0312

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Loss Tomography in Wireless Sensor Network Using Gibbs Sampling 161

Finally, we consider the computational cost of the proposed algorithm. We run
a simulation program implemented by this algorithm on a PC with 2.8GHz dual
processor. The running times of this simulation program are shown in Table 2.
From Table 2, we find that the proposed loss inference algorithm using for 120-
node sensor network can be done about 4 minutes, which make it good candidate
for sensor network monitoring. In addition, the running time increases with the
network size.

Table 2. Running Time of the proposed algorithm

Network Size Number of measurements Number of iterations Running time (s)
10-node 1200 800 29.13
120-node 1200 800 249.7

6 Conclusions

In this paper, we apply wired network tomography techniques to the wireless
sensor network. An approach to perform inference on sensor network internal link
loss characteristics was proposed. We formulate the problem of link loss inference
as a Bayesian inference problem and propose a Markov Chain Monte Carlo
algorithm using Gibbs Sampling to solve it. Through simulation, we can reach the
conclusion that the internal link loss rate can be inferred accurately without any
of the internal nodes incurring the additional overhead. Our proposal efficiently
solves the problem of link loss characteristics inference. In the future, we will
work on finding out better method to decrease the error of inferred link loss rate.

References

[1] M. Coates, A. H. III, R. Nowak, and B. Yu. “Internet Tomography,” IEEE Signal
Processing Magazine, May 2002, vol.19, no.3, pp.47-65

[2] Zhu,Weiping. “Using Bayesian network on network tomography,” Computer Com-
munications, Feb 2003, vol.26, no.2,pp.155-163

[3] Guo Dong, Wang Xiaodong. “Bayesian inference of network loss and delay char-
acteristics with applications to TCP performance prediction,” IEEE Transactions
on Signal Processing, Aug 2003, vol.51, no.8, pp.2205-2218

[4] Guo, Dong, Wang, Xiaodong. “Bayesian network loss inference,” Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing, Apr
2003, vol.6, pp.33-36

[5] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. “A Two-tier Data Dissemination
Model for Large-Scale Wireless Sensor Networks,” Proceedings of ACM Mobicom
2002, Sep 2002 pp.148-159

[6] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. “Directed
Diffusion for Wireless Sensor Networking,” IEEE Trans. on Networking, Feb 2003,
vol.11, no.1, pp.2-16

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

162 Y. Li et al.

[7] G. Hartl, Baochun Li, “Loss inference in wireless sensor networks based on data
aggregation,” Third International Symposium on Information Processing in Sen-
sor Networks, Apr 2004, pp.396-404

[8] Yongyi Mao, Kschischang F.R., Baochun Li, Pasupathy S. “A factor graph ap-
proach to link loss monitoring in wireless sensor networks,” IEEE Journal on
Selected Areas in Communications, Apr 2005, vol.23, no.4, pp.820-829

[9] Jerry Zhao, Govindan Ramesh, Estrin Deborah. “Sensor network tomography:
Monitoring wireless sensor networks,” Computer Communication Review, Jan
2002, vol.32, no.1, pp.64

[10] J Zhao, R Govindan, D Estrin. “Residual energy scan for monitoring sensor net-
works,” IEEE Wireless Communications and Networking Conference, Mar 2002,
vol.1, pp.356-362

[11] Jerry Zhao. “Measurement and Monitoring In Wireless Sensor Networks,” Ph.D.
Thesis, Department of Computer Science, University of Southern California, Dec
2003

[12] Meng Xiaoqiao, Nandagopal Thyaga, Li Li, Lu Songwu. “Contour maps: Moni-
toring and diagnosis in sensor networks,” Computer Networks, Oct 2006, vol.50,
no.15, pp:2820-2838

[13] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley. “Multicast Topology In-
ference From Measured End-to-End Loss,” IEEE Trans. on Information Theory,
Jan 2002, vol 48, no.1, pp. 26-45

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation
of a Use Case for Wireless Sensor Networks

Georg Wittenburg, Kirsten Terfloth, Freddy López Villafuerte,
Tomasz Naumowicz, Hartmut Ritter, and Jochen Schiller

Department of Mathematics and Computer Science
Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany
{wittenbu,terfloth,lopez,naumowic,hritter,schiller}@inf.fu-berlin.de

Abstract. In-network data processing and event detection on resource-
constrained devices are widely regarded as distinctive and novel features
of wireless sensor networks. The vision is that through cooperation of
many sensor nodes the accuracy of event detection can be greatly im-
proved. On the practical side however, little real-world experience exists
in how far these goals can be achieved.

In this paper, we present the results of a small deployment of sensor
nodes attached to a fence with the goal of collaboratively detecting and
reporting security relevant incidents, such as a person climbing over the
fence. Based on experimental data we discuss in detail the process of in-
network event detection both from the conceptual side and by evaluating
the results obtained. Reusing the same traces in a simulated network, we
also look into the impact of multi-hop event reporting.

Keywords: Wireless sensor networks, in-network data processing, event
detection, experimental evaluation, use case, fence monitoring.

1 Introduction, Goals and Motivation

The close cooperation of individual sensor nodes in order to achieve a common
goal is a key feature of wireless sensor networks (WSNs). While a wealth of
distributed algorithms has been proposed and evaluated in the areas of medium
access and routing, the situation is different for distributed event detection:
Several theoretical approaches have been described [1,2,3], but to the best of our
knowledge none of them has been evaluated in a real-world experiment.

On the other hand, several high-profile deployments of WSNs have been un-
dertaken and evaluated by various research groups [4,5,6]. However, they all have
in common that they are largely data-agnostic and limit themselves to reporting
raw data as collected by the sensor nodes deployed in the field. Only recently
we have seen first evaluations of the accuracy of the readings and attempts to
perform complex in-network data aggregation and event detection [7,8]. One of
the key features of WSNs – in-network data processing and event detection – is
thus still widely unexplored in practice.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 163–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 G. Wittenburg et al.

Fig. 1. Patio of institute
with construction fence

Fig. 2. Sensor node at-
tached to the fence

Fig. 3. Casing of a sensor
node

In this paper, we present the results of a real-world experiment on in-network
event detection. Our experiment is built around the example of a fence mon-
itoring application whose task it is to detect and report any security related
incidents that may occur on a fence, in our case a person climbing over the fence
and entering a supposedly restricted area. The focus of this application is thus
clearly different from those of other deployments which were mostly concerned
with some flavor of environmental monitoring.

Furthermore, fence monitoring is an excellent example for the demand for in-
network data processing: Similar to the questions raised in [9], the sheer volume
of raw data caused by a single event makes it impractical to transmit the com-
plete data to a base station for processing, especially when keeping energy consid-
erations in mind. Further, the sensor readings caused by a security-related event
can be expected to differ sufficiently from those of common every-day events,
and thus there should be a reasonable chance for a distributed, in-network event
detection algorithm to succeed.

Summing things up, the primary goals of our fence monitoring use case are:

– to establish whether fence monitoring is feasible with current WSN technol-
ogy by setting up a working system,

– to quantify the accuracy of our event detection algorithm with a special focus
on differences between node-local and distributed event detection, thereby
putting a number to the value added by networked sensors, and

– to develop and describe a systematic approach to building a robust event
detection and reporting algorithm that performs reliably even in a multi-
hop scenario.

To these ends, and as shown in Figures 1-3, we deployed a construction fence
in the patio of our institute. To each element of the fence we attached a Scatter-
Web sensor node equipped with an accelerometer to measure its movement. We
then first calibrated the sensors to respond to the typical movements of fence

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 165

FAT TimeNet SDCard String System Timers

CC1020 Comm Configuration Data Messaging

Scatterweb 3.x API

User Application

System Software

Fig. 4. The ScatterWeb 3.x software architecture

elements, and proceeded afterwards to gather samples of raw data corresponding
to different types of events. Based on these, we isolated distinctive features of
the raw data corresponding to different types of events, and implemented and
evaluated a distributed event detection algorithm.

After a brief introduction into the WSN platform and tools we used in our
experiments in Section 2, we present the details of our deployment and the
software architecture of our distributed event detection algorithm in Section 3.
In Section 4, we thoroughly evaluate this algorithm based on both real-world
experiments and simulations. Finally, in Section 5 we review related work and
in Section 6 we conclude and point out directions for future research.

2 The ScatterWeb WSN Platform

For setting up our experiment, we used a new version of the ScatterWeb research
hardware [10], which has been recently developed with a focus on modularity:
The Modular Sensor Board (MSB) as already depicted in Figure 3 consists of
a core communication module, add-on sensor modules and an optional interface
board. The core communication module consists of the TI MSP430 16-bit micro-
controller, the Chipcon CC1020 868MHz radio transceiver, and connectors for
analog and digital sensors and actuators. Furthermore, a Freescale Semiconduc-
tor MMA7260Q accelerometer is soldered directly onto the board.

An add-on board allows for a broad variety of sensors if needed, ranging from
luminosity to motion and from sound to GPS. The core module and the sensors
of the add-on board can be powered either by a 3V battery or by the interface
board which in addition also provides a flash interface and a USB connection for
debugging and power supply.

On the software side, we were able to depend on the broad range of features al-
ready available for this platform. These include the ScatterWeb system software,
which is responsible for supporting basic tasks such as interrupt handling, packet
handling, medium access, management of run levels and debugging options, as
well as a rich application programming interface (API) as depicted in Figure 4.
Aside from the work on the ScatterWeb core, extensive efforts have been under-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 G. Wittenburg et al.

taken to supply tool support with the ScatterWeb Software Development Kit
(SDK) which is based on Microsoft Visual Studio 2005.

The experiments run on top of the FACTS middleware, a framework especially
designed for WSNs and implemented on top of the ScatterWeb platform [11].
Capturing the intrinsic challenges of dealing with low-resource devices and event-
centric programming at the language level, the core of FACTS is built around
the rule-based Ruleset Definition Language (RDL). Using RDL, a developer is
able to specify sets of interacting rules to define node and network behavior. At
runtime, these rules are evaluated locally against the fact repository, a central
data storage entity on a sensor node, by a sandboxed execution environment.

Currently RDL supports standard operations for fact manipulation, filtering,
comparison and different flavors of aggregation. Support for running native code,
e.g. to efficiently implement complex mathematical computations or to access
hardware directly, is integrated into the language. The design of FACTS aims
towards low resource consumption, thus a lot of work has been spent on reducing
the memory footprint down to 8KB in terms of the middleware components
installed on the sensor nodes.

3 Experimental Setup and Software Architecture

Based on the available hard- and software components introduced in the previous
section, we will now present how our construction fence testbed was set up and
which types of events we considered in our experiments. We will then continue
to describe the architecture of our distributed event detection algorithm.

(a) Kick event (b) Lean event (c) Shake (short) event

(d) Shake (long) event (e) Peek event (f) Climb event

Fig. 5. Raw data of different event types

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 167

3.1 Construction Fence Deployment

As already illustrated in Figure 1, we deployed a ten-element construction fence
in the patio of our institute. Each fence element is 3.5m wide and 2m high. The
exact layout of this deployment is shown in Figure 8. We rigged this installation
with one ScatterWeb MSB sensor node per fence element, each node attached to
the right hand side of the element at a height of 1.65m (Figure 2). Weather-proof
junction boxes with a size of 80mm × 40mm served as casing of the sensor nodes
(Figure 3). It is however worth noting that the sensor nodes themselves fit nicely
into the hollow metal frame of a fence element, a location at which they would
be even more protected from the environment, possibly at the expense of radio
transmission quality.

3.2 Types of Events

In our experiments, we considered the following six events as typical scenarios
that a fence monitoring system will be exposed to:

Kick: A person kicks against the fence.
Lean: A person gently leans against the fence.
Shake (short): A person shakes the fence for a short period of time.
Shake (long): Same as above, but for a prolonged period of time.
Peek: A person climbs up the fence with the intention to take a look into the

restricted area.
Climb: A person climbs over the fence.

Assuming that a person climbing over a fence is the only event with security im-
plications, the important question is how a WSN can be programmed to reliably
identify this single type of event that is worth reporting. We did not consider
telling the other events apart to keep our use case as realistic as possible, al-
though this would have been possible with additional rules similar to the one
shown in Listing 1.1.

We programmed a ScatterWeb MSB sensor node to sample its accelerometer
at 10Hz with a sensitivity setting of 1.5g. In Figure 5, we show the raw data in
terms of the sum of the differences of elements between the previous three dimen-
sional acceleration vector −→v last and the current vector −→v cur. In the following,
we will refer to this scalar quantity as the intensity I of an event.

I = | (vx last − vx cur) | + | (vy last − vy cur) | + | (vz last − vz cur) |

Looking at the figures, we note that each event has a more or less unique pattern
which may be used for event detection. To prevent problems possibly arising from
limited memory resources, we chose not to implement a pattern matching algo-
rithm based on raw data. Instead, we propose a layered architecture to handle
this task.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 G. Wittenburg et al.

yes

confirm?

Raw Data Aggregation

Local Event Detection

Neighborhood Event Detection

Event Reporting

node 1 node 2 node n-1 node n

Fig. 6. Layers of the distributed event detection algorithm

3.3 A Layered Software Architecture for Event Detection

The different layers of our architecture implement a distributed, multi-step event
detection algorithm. In the lowest layer, raw sensor readings are isolated from
background noise and aggregated into a set of characteristic properties. The
next layer checks whether known patterns appear in these aggregated values
and identifies them as event candidates. In the next layer, the sensor nodes
collaboratively decide whether a noteworthy event has in fact occurred within an
n-hop neighborhood by exchanging information about recently observed event
candidates. Finally, the uppermost layer reports confirmed events to the base
station of the deployment. Figure 6 illustrates how these layers interact and the
level of abstraction at which they process data.

We first introduce the exact functionality of each layer in this section, while
returning to calibration parameters and implementation details in the following
section.

Raw Data Aggregation: This layer periodically retrieves the current accel-
eration vector from the accelerometer and converts it into the intensity as
described above. As soon as the intensity surpasses a predetermined thresh-
old value, the sampling rate is increased and new intensity values are aggre-
gated upon retrieval from the sensor. Once the intensity falls below a second
threshold value, the sampling rate is decreased for energy efficiency and a
tuple of the aggregated data values is reported to the local event detection
layer. In the following, we will refer to this tuple of aggregated data values
as basic event. Typical aggregated data items are the minimum, average,
and maximum of all intensity values sampled during the basic event, as well
as the total duration of the basic event. Depending on the nature of the
event patterns to be recognized, additional aggregated data items may also
be considered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 169

The advantages of this design for the raw data aggregation layer are twofold:
Memory usage is kept at a minimum by aggregating sensor readings as they
are being sampled, and excessive energy consumption is avoided during in-
tervals in which no events occur. The drawback is that the raw data itself is
not available for event detection. However, we regard this as unproblematic
given the right selection of data items to aggregate.

Local Event Detection: Based on the basic events reported by the raw data
aggregation layer, this layer matches the aggregated data contained in the
basic events against previously established patterns. The goal of this pro-
cedure is to aggregate one or many basic events into an event candidate,
i.e. to infer the action that just occurred at the fence from patterns in the
aggregated data.
To ensure reliable event detection, patterns in the aggregated data contained
in the basic events must be sufficiently distinctive. This of course depends
largely on the application and on the types of events that may occur. Hence,
the patterns in basic events that lead to event candidates need to be estab-
lished carefully by the means of either a manual or automatic process before
the WSN can be deployed. Once identified, the event candidates are handed
up to the neighborhood event detection layer.

Neighborhood Event Detection: In this layer, event candidates are propa-
gated within an n-hop neighborhood of the sensor node that originated the
candidate. While theoretically this procedure involves multi-hop communi-
cation, given the fact that for the fence monitoring application the radio
range of current sensor nodes exceeds the area in which sensors gather data
related to an event, we limit ourselves to communication within the one-hop
neighborhood.
Upon receiving an event candidate, each sensor node evaluates its own cur-
rently available basic events and event candidates and depending on the
settings of the distributed aggregation algorithm sends an acknowledgement
to the originating node. Similar to the local event detection layer, the pa-
rameters of whether to acknowledge an event candidate or not depend on the
application and need to be carefully established before an actual deployment.
If the sensor node that originally broadcasted the event candidate within
its neighborhood receives enough positive replies within a certain period of
time, it may safely regard the event candidate as a confirmed event, and thus
send it to the base station.

Event Reporting: The event reporting layer is not an intrinsic part of in-
network event detection and we include it in our model merely for architec-
tural completeness. The task of this layer is to route the confirmed events
from the sensor nodes that reported them to the base station. A great variety
of routing algorithms for WSNs have been proposed and we omit a thorough
evaluation for brevity. In our implementation, we have used a simple spanning
tree routing algorithm with the base station being the root of the tree.

At each layer, several parameters need to be configured in order to reliably
identify basic events, event candidates, and confirmed events. For different ap-
plication scenarios, e.g. different types of fence elements, these parameters need

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 G. Wittenburg et al.

to be carefully established, possibly as part of a calibration phase before the
system becomes operational. During this calibration phase, one should keep in
mind that event detection must be triggered locally on at least one sensor node.
Therefore, the calibration should aim at setting the detection threshold rather
low for local event detection and only afterwards try to eliminate false positive
event candidates in the neighborhood event detection layer.

3.4 Design Alternatives and Robustness Considerations

There are several ways to refine parts of the event detection architecture de-
scribed in the previous section which we did not implement in our experiments
for simplicity. Most of them are related to increasing the robustness of the dis-
tributed event detection algorithm with regard to packet loss on the wireless
medium.

In our current implementation, there is no mechanism to ensure reliable de-
livery of event candidates within the neighborhood. As a result, if an event
candidate is not delivered due to a packet collision on the wireless medium, no
ACKs are sent and a possibly valid event candidate is discarded. The way to solve
this issue is by replying to all event candidates with either an ACK as described
above or with a NACK in case local data fails to confirm that this event occurred.
The originating sensor node can then count the number of ACKs and NACKs re-
ceived and retransmit the event candidate if this number is below a threshold.
This procedure incurs an increase in communication which may well have side
effects on energy consumption and packets collisions.

Similar to the problem lined out above, it may also occur that confirmed
events are lost on their way to the base station. This may either be solved as
part of the routing protocol, or alternatively the sensor node may retransmit the
event if no ACK was received from the base station after a certain time interval.
Further, it would be desirable to only report exactly one confirmed event to the
base station for each real-world event.

4 Deployment and Experimental Results

We conducted over 40 test runs comprising all possible events described in Sec-
tion 3.2 on the deployed construction fence equipped with our fence monitoring
WSN. Each of these runs included one event occurrence per type, thus the frac-
tion of climb events per run is 1

6 . Ten of these runs were used for the calibration
of the raw data aggregation layer and 15 runs for the local event detection layer
respectively.

4.1 Calibration Values and Implementation Details

From the raw data already presented in Figure 5, we concluded that an intensity
threshold of 200 nicely filters out background noise and minor events. As soon as
the intensity value surpasses this threshold, the sampling rate is increased from
1Hz to 10Hz, and the values of the accelerometer are aggregated into basic events.
Each basic event contains the duration of its sampling period in milliseconds and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 171

(a) Number of events (b) Combined duration

(c) Maximal intensity (d) Minimal intensity

Fig. 7. Aggregated data of different event types on one node

the average intensity during this time. The data did not warrant using a different
second threshold value for the hysteresis, hence the sampling rate is reduced to
1Hz again once the intensity falls below the same threshold.

The motivation for chosing the duration and the average intensity as param-
eters of the basic events is related to the distinctive patterns in different aggre-
gated data values. In Figure 7, we show a selection of these patterns for some of
the aggregated data values we considered. For both the number of basic events
and their combined duration (Figures 7(a) and 7(b)), we note that the values for
climb events differ from all others. On the other hand, no clear pattern can be
observed for maximal or minimal intensity (Figures 7(c) and 7(d)). Therefore,
on the local event detection layer, the number of basic events produced by the
lower layer and their combined duration are suitable values for event detection
while maximal and minimal intensity are not. Also note that the average inten-
sity is not used for event detection on this layer, but rather passed to the upper
layers for later evaluation.

While there are several options on how to implement our layered event de-
tection architecture, we opted for a rule-based implementation supported by
our middleware. Rules such as the one shown in Listing 1.1 suit this particular
application because the event-centric semantics of the programming language
map nicely to the problem of event detection. For instance, the rule shown will
trigger as soon as three conditions evaluate to true: The number of basic events
generated has to be greater or equal to three (line 2), the sum of the duration of
these events has to be greater or equal to 0.49s (line 3) and smaller or equal to
1.71s (line 4). Once again, we derived these values by studying trace files, thus
manually calibrating the local event detection layer. Once all conditions are
met and this rule fires, an event candidate is generated which also records the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 G. Wittenburg et al.

Listing 1.1. Ruled-based local event detection

1 rule aggregateBasicEvents 100
2 <- eval ((count {basicEvent }) >= 3)
3 <- eval ((sum {basicEvent duration }) >= 0.49)
4 <- eval ((sum {basicEvent duration }) <= 1.71)
5 -> define eventCandidate [intensity = (max {basicEvent

intensity })]
6 -> retract {basicEvent}

maximal intensity of the basic events that trigger its creation (line 5) and all
basic events are retracted from the system (line 6). The entire event detection
ruleset, including for example the rule that purges unused basic events from
the system after 30s, consists of 15 rules and has a memory footprint of 1.4KB.
A full introduction into the Ruleset Definition Language (RDL) and the exact
semantics of the FACTS runtime environment are available in [11].

In the neighborhood event detection layer, we programmed a sensor node to
broadcast an event candidate within its one-hop neighborhood since this range
covers all nodes that may have been exposed to the possible climb event. Upon
reception of an event candidate and given sufficient local information that an
event occurred, a node confirms this by sending an ACK to the originating node.
If an ACK is received by the originator within a 1s interval, the event is regarded
as confirmed and handed to the event reporting layer, which in turn forwards
this information to the base station.

In order to properly evaluate the event reporting layer of our WSN use case,
we decided to focus on a much larger deployment than the one at our disposal.
We therefore resorted to a simulation-based evaluation using the traces of basic
events obtained during our experiments and the “ScatterWeb on ns-2” simula-
tion approach which allows to run unmodified algorithms on both ScatterWeb
sensor nodes and the ns-2 network simulator [12]. As a typical scenario we chose
the construction site of the U.S. embassy located in the center of Berlin.

The layout of the simulated deployment is shown in Figure 10. It consists of
105 sensor nodes placed 3.5m apart from each other along the fence line. Taking
into account the expected decrease in signal strength if sensor nodes are placed
within the metal frame of a fence element, we set the transmission range to 10m
as part of the configuration of the two-ray ground radio propagation model.

4.2 Results and Discussion

We use two statistical metrics for binary classification, sensitivity and speci-
ficity, to quantify the accuracy of our event detection algorithm.1 The goal is to
maximize both values, i.e. to correctly classify both events and non-events.
1 Sensitivity is the ratio of correctly identified climb events and all climb

events that occurred, i.e. sensitivity = #true positives / (#true positives +
#false negatives). Specificity is the ratio of correctly identified other events and all
other events, i.e. specificity = #true negatives / (#true negatives + #false
positives).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 173

X

climb

5m

Fig. 8. Construction fence layout in
the patio of our institute

Fig. 9. Experimental results of in-network event
detection accuracy

In Figures 8 and 9, we illustrate the construction fence deployment in the
patio of our institute and the experimental results obtained. At the local event
detection layer, a single node of our system performs with a sensitivity of 100%
and a specificity of 41.3%. These values indicate that one of our design goals -
setting the detection threshold rather low in this layer - has been achieved, since
all climb events have been recognized. On the downside, 59.7% of the all other
events are also classified as event candidates. We observe that the specificity
is increased by 12.0% by the neighborhood event detection layer. This increase
comes at the expense of incurring a 13.3% decrease in sensitivity. These values
show that our neighborhood event detection layer does well at filtering out false
event candidates, but regretably also correct detections. Still, this is consistent
with our design principle of a low event detection threshold in the local event
detection layer and a higher threshold in the neighborhood event detection layer.

This level of accuracy observed is less than the one we had expected after our
initial test runs, especially with regard to the high number of false positives. We
attribute this to a variety of factors: On the technical side, we had two node fail-
ures during the experiment and of course this resulted in unforeseen inaccuracies
during neighborhood event detection. Further, we suspect that gathering trace
data at the same time as performing event detection also adversely affected accu-
racy. More important and consistent with the evaluation found in [7] is however
the fact, that the evaluation of the traces suggests that slight variations of the
parameters would have significantly improved the results obtained. From this
we have to conclude that our manual calibration of the algorithm needs to be
improved. On the non-technical side, we note that the event patterns changed
over time as our test candidates got more proficient in climbing over the fence.

Before proceeding to simulate a large scale deployment to quantify the im-
pact of multi-hop event reporting, we verified the accuracy of the simulation by
rebuilding our original experiment within the simulator and playing back the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 G. Wittenburg et al.

sink

climb

200m

© GeoContent GmbH 2000 - 2006

X

Fig. 10. Simulated construction
fence layout around the U.S. em-
bassy construction site in Berlin

Fig. 11. Experimtental and simulation-based re-
sults of in-network event detection and reporting
accuracy

original traces. We then ran a series of ten simulations, the average results of
which are shown in Figure 11 alongside with the real-world experimental data.
As we observed only a minor 4% increase in specificity due to slightly larger
packet loss, we concluded that running large scale simulations is appropriate.

The average results of ten simulation runs of the U.S. embassy construction
site scenario as illustrated in Figure 10 are included in Figure 11 labeled as
“Event Reporting / Simulation”. We note that even our very simplistic approach
to event reporting, relying on little more than a spanning tree routing, does not
have a negative impact on the results, with variations in both sensitivity and
specificity below 1%. While our simulation does not include node failures, based
on our data and in light of the progress in robust routing protocols for WSN,
we still tend to regard event reporting and routing as only a minor problem in
the use case of fence monitoring.

Apart from the increase in accuracy, in-network event detection has the ad-
ditional benefit of reducing the data that needs to be sent to the base station.
In Figure 12, we quantify this advantage by looking at the number of pack-
ets transmitted during the entire simulation. The figure contains the number of
packets sent by our complete layered architecture as well as the same numbers
for the two hypothetical cases in which either basic events or event candidates
are transmitted to the base station for centralized event detection.

For a transmission range of 10m, our data shows that locally aggregating basic
events into event candidates reduces the overall traffic by 79.3%. Aggregating
event candidates into confirmed events reduces the overall traffic by another
68.4%. This corresponds to a total reduction of 93.4% of the traffic by our
layered event detection architecture.

This reduction of traffic by means of in-network aggregation depends on
the topology of the network. For instance, in the trivial case of a network in
which all nodes are located within the 1-hop neighborhood of the base station,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 175

Fig. 12. Number of packets transmitted
over time in the simulation with 10m trans-
mission range at different levels of in-
network aggregation

Fig. 13. Number of packets transmitted
against hops between event source and
base station at different levels of in-
network aggregation

in-network aggregation will hardly reduce the number of packets transmitted.
In fact, the distributed event detection algorithm even incurrs the overhead of
data transmissions as part of the neighborhood event detection layer, which is
not required if all event candidates are received by the base station.

In order to examine the impact of n-hop event reporting, we ran additional
simulations with the transmission range of the simulated sensor nodes set to
10m, 20m, 30m, and 40m. These transmission ranges correspond to an average
hop count of 26.14, 12.84, 7.88, and 4.94 between the source of the event and
the base station respectively. The number of packets at each level of in-network
aggregation for these hop counts is shown in Figure 13. We observe that the re-
duction of traffic attributed to the neighborhood event detection layer decreases
when less hops are required to report the event candidates to the base station. As
expected, the diagram also shows the small overhead of in-network aggregation
for very well connected topologies. Further, the decrease in confirmed events for
a 10m transmission range as opposed to a 20m transmission range, while not
directly affecting the accuracy, shows that robustness becomes an issue for re-
porting events over higher numbers of hops. Possible solutions to this issue have
already been discussed in Section 3.4.

Turning our attention to the reduction of traffic due to local aggregation, we
note that even at low hop counts the number of packets is still reduced by 75.6%.
This underlines that the value added by detecting events locally on the sensor
nodes is largely independant of the network topology.

5 Related Work

As already briefly mentioned in the introduction, several theoretical approaches
to event detection have been published. On the local and the neighborhood
event detection layer, both Petri nets [1] and boolean expressions [2] have been
proposed, however no evaluation of these algorithms is presented. In [3], the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 G. Wittenburg et al.

authors propose to employ Probabilistic Context Free Grammars (PCFGs) in a
layered architecture similar to ours and evaluate this approach using a simulation
with real traces. Their use case of recognizing motion patterns differs from ours in
that it allows to infer semantic meaning of raw data locally on a sensor node, and
their evaluation stops short of actually quantifying the accuracy of the system.

On the other hand, a wealth of deployments of WSNs have been described.
To mention but a few, deployments have focussed on habitat monitoring [4], fire
detection [5], and environmental monitoring [6]. While some of these applications
are good candidates for in-network event detection, this functionality neither was
an integral part of any of these deployments, nor did the authors report on the
level of accuracy of the event detection algorithm used, if any. Instead, reports
on deployments mostly limit themselves to describing the raw data collected.

Focussing more on event detection, research untertaken within the NEST
project deals with discrimination of people, vehicles and noise using radar-
enabled sensor networks [13]. While we opted for classifying the events observed
within the network, the authors describe a base-station centerd classification
approach and the trade-off between classification accuracy and latency.

The two projects most similar to our work were published by He et al. in [7]
and by Werner-Allen et al. in [14,8]. In [7], He describes the VigilNet project,
a system for surveillance missions with applications such as vehicle tracking. It
has a broader scope than our work in that it comprises a deployment at a much
larger scale and event detection is only one component of their system. The
authors did not focus as much on the event detection algorithm as we did, as the
only parameter that is mentioned is the degree of aggregation which corresponds
to the number of ACKs send at our neighborhood event detection layer. It is also
unclear how many different types of events they exposed their system to. Based
on our experience, we can however support their claim that slight miscalibrations
of the event detection algorithm have an immense impact on its accuracy.

In [14] and later followed-up by [8], Werner-Allen et al. evaluate a deploy-
ment of sensor nodes on an active volcano with the goal of monitoring volcanic
eruptions. The traces obtained during the first deployment were used to both
evaluate an offline event detection algorithm and calibrate the event detection
algorithm for the second deployment. The architecture of the algorithm deployed
differs from ours in that sensor nodes send basic events to the base station and
in response to this the base station may decide to collect data from all nodes in
the network, while our approach relies entirely on in-network event detection.
The results of their second deployment as published in [8] indicate that the accu-
racy of their event detection architecture faces worse problems than ours under
real-world conditions. Sensitivity is very low at 1.2% and specificity is at 100%,
which we attribute to a miscalibration of the parameters of the event detection
algorithm used during this deployment.

6 Conclusion and Future Work

The goal of this paper was to explore how a security-focussed system relying
on the in-network data processing capabilities of WSNs can be constructed. We

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 177

chose the example of a fence monitoring application due to both its demanding
requirements on distributed event detection and realism of the use case. Putting
our layered approach to event detection into practice, we have built and evaluated
fence monitoring deployments both in real-world and simulated experiments.

Our system showed a sensitivity of of 86.7% and a specificity of 53.3% dur-
ing these experiments. Distributed event detection contributed to the specificity
by eliminating false event candidates, however at the same time decreased the
sensitity by eliminating correct detections. Further, our layered approach to in-
network event detection was able to reduce the overall network traffic by up
to 93.4% depending on the network topology as compared reporting aggregated
sensor data to the base station for centralized processing. Our results are novel
in so far as to the best of our knowledge no previous work has quantitatively
evaluated the impact of in-network processing based on real-world experiments.

At the same time it must be noted that the level of accuracy we achieved
in our experiments is by far not sufficient for a production-level deployment. In
the future, we need to focus on refining the calibration phase of the event detec-
tion algorithm with the goal of reducing the number of false positive detections.
This may include looking at the raw data in a transformed domain to optain
a better differentiation of events and examining whether a pattern recognition
approach (e.g. k-nearest neighbors) for classification is more suitable. Preferably,
calibration should be an automated process instead of the manual calibration
we utilized. Fortunately, our comparison between a real deployment and a sim-
ulation relying on the same traces indicates that simulation is a viable tool for
studying this kind of application. Hence, given enough traces of raw data, it
should be feasible to perform the calibration using simulation tools.

Another problem to be tackled is how to avoid that failures of individual nodes
and the resulting variation in the average node degree of the WSN adversely
affects neighborhood event detection. One possibility we plan to evaluate in this
context of self-organization are periodic runs of recalibration phases. Once these
adaptations prove successful, we hope to verify our findings in a large scale
deployment over a longer period of time as part of which we can also evaluate
the long-term energy consumption of our fence monitoring system.

References

1. Jiao, B., Son, S.H., Stankovic, J.A.: GEM: Generic Event Middleware for Wire-
less Sensor Networks. In: Proceedings of the Second International Workshop on
Networked Sensing Systems (INSS’05), San Diego, U.S.A. (2005)

2. Kumar, A.V.U.P., Reddy, A.M., Janakiram, D.: Distributed Collaboration for
Event Detection in Wireless Sensor Networks. In: Proceedings of the Third Inter-
national Workshop on Middleware for Pervasive and Ad-hoc Computing, Grenoble,
France (2005) 1–8

3. Lymberopoulos, D., Ogale, A.S., Savvides, A., Aloimonos, Y.: A Sensory Gram-
mar for Inferring Behaviors in Sensor Networks. In: Proceedings of the Fifth In-
ternational Conference on Information Processing in Sensor Networks (IPSN’06),
Nashville, U.S.A. (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 G. Wittenburg et al.

4. Szewczyk, R., Polastre, J., Mainwaring, A., Culler, D.: Lessons From a Sensor
Network Expedition. In: Proceedings of the First European Workshop on Sensor
Networks (EWSN’04), Berlin, Germany (2004)

5. Doolin, D.M., Sitar, N.: Wireless Sensors for Wildfire Monitoring. In: Proceed-
ings of SPIE Symposium on Smart Structures & Materials / NDE’05, San Diego,
California, U.S.A. (2005)

6. Martinez, K., Padhy, P., Riddoch, A., Ong, R., Hart, J.: Glacial Environment
Monitoring using Sensor Networks. In: Proceedings of the Workshop on Real-
World Wireless Sensor Networks (REALWSN’05), Stockholm, Sweden (2005)

7. He, T., Krishnamurthy, S., Stankovic, J.A., Abdelzaher, T., Luo, L., Stoleru, R.,
Yan, T., Gu, L., Zhou, G., Hui, J., Krogh, B.: VigilNet: An Integrated Sensor
Network System for Energy-Efficient Surveillance. ACM Transactions on Sensor
Networks (TOSN) 2(1) (2006) 1–38

8. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and Yield
in a Volcano Monitoring Sensor Network. In: Proceedings of the Seventh USENIX
Symposium on Operating Systems Design and Implementation (OSDI’06), Seattle,
U.S.A (2006)

9. Marrón, P.J., Sauter, R., Saukh, O., Gauger, M., Rothermel, K.: Challenges of
Complex Data Processing in Real World Sensor Network Deployments. In: Pro-
ceedings of the ACM Workshop on Real-World Wireless Sensor Networks (REAL-
WSN’06), Uppsala, Sweden (2006) 43–48

10. Schiller, J., Liers, A., Ritter, H.: ScatterWeb: A Wireless Sensornet Platform for
Research and Teaching. Computer Communications 28 (2005) 1545–1551

11. Terfloth, K., Wittenburg, G., Schiller, J.: FACTS - A Rule-Based Middleware
Architecture for Wireless Sensor Networks. In: Proceedings of the First Interna-
tional Conference on COMmunication System softWAre and MiddlewaRE (COM-
SWARE’06), New Delhi, India (2006)

12. Wittenburg, G., Schiller, J.: Running Real-World Software on Simulated Wireless
Sensor Nodes. In: Proceedings of the ACM Workshop on Real-World Wireless
Sensor Networks (REALWSN’06), Uppsala, Sweden (2006) 7–11

13. Arora, A., Dutta, P., Bapat, S., Kulathumani, V., Zhang, H., Naik, V., Mittal,
V., Cao, H., Demirbas, M., Gouda, M., Choi, Y.R., Herman, T., Kulkarni, S.S.,
Arumugam, U., Nesterenko, M., Vora, A., Miyashita, M.: A Line in the Sand: A
Wireless Sensor Network for Target Detection, Classification, and Tracking. Com-
puter Networks 46(5) (2004) 605–634

14. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring Volcanic
Eruptions with a Wireless Sensor Network. In: Proceedings of the Second European
Workshop on Wireless Sensor Networks (EWSN’05), Istanbul, Turkey (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 179 – 194, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Development of a Wireless Sensor Network for
Collaborative Agents to Treat Scale Formation in Oil

Pipes

Frank Murphy, Dennis Laffey, Brendan O’Flynn, John Buckley, and John Barton

Tyndall Institute, Lee Maltings, Prospect Row, Cork, Ireland
fmurphy@tyndall.ie

Abstract. A wireless network system (WSN) has been developed for a team of
underwater Collaborative Autonomous Agents (CAAs) that are capable of
repairing and locating scale formations in tanks and pipes within inaccessible
environments. The design of the hardware is miniaturised and it consists of a
stackable 25mm form-factor that includes the appropriate functionality and ISM
wireless communications for the application. Sourcing of relevant sensors for
the application was based on having the necessary sensing range; being
miniature in size and having low power consumption. Once agent functionality
was achieved, antennas were placed within the infrastructure of the pipe and
CAAs to realise direct and indirect communication for the WSN.

Keywords: FPGA, WSN, robotic development, underwater sensors, Zigbee
communication protocol.

1 Introduction

This paper describes the exploitative and investigative methods for the engineering
of emergent collective behaviour in societies of miniature agents. These multi-agents
can be utilised to expand the action-horizon of humans in inaccessible fluidic
environments such as those found in critical components of material/industrial
systems. Such agents have been given the acronym CAAs (Collaborative
Autonomous Agents) and can be viewed as having identical simple structures capable
of perceiving and exploring their environment, selectively focusing their attention,
communicating with peers, initiating and completing corrective tasks as appropriate.

The application chosen to show these properties concentrates on the development
of CAAs that can be deployed for the repair of bypass pipes used in the oil-industry.
Pipelines can deteriorate due to scale formation and this can be detected in the
vicinity of the fault as a variation in pH value due to the formation of scale due to
CaCoO3 deposits when the pipes are flushed with water. Each of the CAAs have four
pH sensors integrated on its shell to locate these faults and have the ability to
navigate, explore and avoid collisions with the wall of the pipe and each other using
proximity sensors integrated on the outside surface of the CAA. The geometry of the
test-pipe is cylindrical and has dimensions of 0.5m in diameter and 2m in length.

As CAAs are part of an underwater system and care needs to be taken in the
sourcing of sensors [1] particularly as small form factor sensors are required within

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 F. Murphy et al.

the agent. This was a point of significance as sensors were to be integrated on the
CAAs surface and needed to be in contact with the water medium. The Ingress
Protection (IP67) property used for the packaging of submerged sensors also needed
to be considered for sensors used in such an aqueous application and the power
consumption it required.

Once the sensors were integrated, Finite State Machines (FSMs) were designed to
test the CAAs hydrodynamics and to develop the appropriate algorithms for the
sensor/actuator feedback loop for pH following behaviour, within the pipe. These
results then formed the basis for the development of the simulation environment
(emulator), which had an embedded physics engine that was capable of modelling the
test pipe environment and CAAs. For synchronised updates of the sensors within the
water medium wireless transceivers were embedded in the pipe and passed data to the
simulation environment. This was enabled using direct RF communication, which also
provided RSSI (Received Signal Strength Indictor) data allowing the tracking of agents
within the pipe by applying a triangulation algorithm. Indirect communication was also
built into the system and this enabled the swarm-like social collaborative behaviour.

A 25mm form-factor platform, Fig. 1, was developed that can host algorithms for
autonomy for instance a FSM and potentially an SNN [2][3]. This platform consists
of a 3-D programmable modular system that can embed such algorithms on the FPGA
[4][5] module; the platform also houses the sensory and communication modules that
are vital for the agent to interact autonomously with their environment.

Fig. 1. WSN 25mm form factor

Other research institutes have developed similar underwater robotic systems [6]
using alternative mote technologies, which have measured depth and temperature,
however, an ad-hoc wireless communication test-bed has not been described. One of the
main challenges of using Wireless Sensor Networks in miniaturized robotic agents in
underwater applications, is the natural occurrence of RF attenuation through water (382
dB/m at 3 GHz) this results in a loss of transmitter signal strength and reduced range of
RF systems underwater [7]. The antennas described in this paper use miniaturised
versions that are spatially arranged on the CAA for RF coverage around its shell.

2 Hardware Development

The hardware has been designed to be versatile since its wireless core system can
utilise custom interfaces and so can be used in a host of ad-hoc networks and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 181

applications/scenarios. The design of the WSN hardware supports autonomous
formats and uses wireless units that are designed to collect data and transmit to a
central host (or distributed hosts). The unit is made up of a modular system (Fig 2) of
hardware components that include resources for computation, communications and
sensor implementation for its system. Thus the module is adaptable to various
configurations due to its flexible and generic design capabilities.

Fig. 2. A modular description of the CAA

2.1 Description of Hardware Used on the WSN

2.1.1 FPGA
A Spartan2E FPGA module was used to host the algorithms that is needed for the
autonomy of the agent. In addition the FPGA provides a re-configurable processing
solution where algorithms can be tested and updated, when required. This provides
flexibility to the system in regards to the development and optimisation of algorithms.

2.1.2 Communications Module
A communications module was designed and built to the 25mm stackable architecture
specifications. This module supports the direct communications of the CAA to
simulation environment as well as the CAA-to-CAA indirect communication
mechanisms. The module is based upon the CC2420 transceiver from Chipcon, which
implements a Zigbee compatible IEEE802, 15.4 standard. The transceiver is
supported by an ATMEL ATMega128L micro-controller that allows the
communication mechanisms to be programmed. The features of the CC2420 that
make it attractive are low power consumption for extended battery life and support for
RSSI so that the strength of the RF gradient fields can be measured for the indirect
communication and the location can be estimated for the direct communication.

Additional hardware was also designed for the implementation of direct and indirect
communication. This led to the development of two extra modules that are part of the
25mm hardware platform. These namely are the 4-way and 6-way antenna switch

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 F. Murphy et al.

modules, which provide the essential building blocks for the communications mech-
anism. The 4-way board is integrated within the agent for RF transmission by the CAA
and the 6-way module is placed along the demonstration pipe to receive the data from
the CAAs. This RF system when combined enables RF coverage through out the pipe.

2.1.2.1 25mm 4-Way Communications Mechanism. This board is designed to allow
the antennas to be consecutively activated under the control of the 25mm transceiver
board. The switching of the antennas is generated at least 10 times per second.
Obviously the RF field is constantly changing due to the switching effect but when
the RF pattern generated by each antenna is integrated the field can be viewed as
spherical. In addition since the CAA moves at a rate of 9cm/min, it was possible to
receive multiple readings from all the antennas in less than a second, in which time
the CAA would have moved very little indeed.

Fig. 3. Four-Way Switch and Transceiver

The chip visible on the board is a MASWSS0018 part from M/A COM (Tyco
Electronics). The board uses MMCX connectors to connect the antennas to the board.

2.1.2.2 25mm 6-Way Communications Mechanism. This board also works on the
principle of connecting the antennas in a consecutive manner to the transceiver. It

Fig. 4. (a) Six-Way Switch (b) Switch Layout Schematic and (c) Switch Usage

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 183

uses an SW90-0004A (MASWCC0008) RF switch, again from M/A COM (Tyco
Electronics). This allowed sufficient antennas to be attached to the pipe so that the
resultant RF field covered all the interior space.

RF coverage is generated in the pipe by a series of three six-way (hexagonal) rings
that are placed every 25cm. One of these rings (“C”) is connected serially to a PC and
is considered a master module and handles all the communication between other
modules and the simulation environment.

Once a message is received the module forwards the information about the
received message along with the location of the antennae (there are a number of
challenges involved with the localisation of the antennas and will be discussed in later
on the evaluation and design of suitable antennas) to the “C” antenna ring.

The data acquired by the simulation environment is broken into six bytes. The first
two bytes consist of the ring address and its antennae position. The third byte provides
the RSSI strength. If the message is initially detected by ring “A” the information is
routed to ring “B” and “C” before finally being sent to the simulation environment.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Acquires
ring address

Acquires
antennae
number

Acquires
RSSI

Original
message
first byte

Original
message

second byte

Original
messages
third byte

Fig. 5. Byte information

2.2 Integration of the 25mm Hardware Platform Interfaced to the CAA

The agent used is spherical; 10cm in diameter see Fig. 6. The CAA has four inbuilt
behaviours these are (a) pH following, (b) collision avoidance, (c) vertical motion and
(d) repair actuation once point defects are found.

Fig. 6. CAA with fitted sensors, integrated on the 25mm module

3 Sensors Integration on the Agent

An appropriate sensor set was decided upon for the application. The main criteria
used for the sourcing of the sensors were (a) the size of the sensors, (b) the power
consumed by the sensor and (c) the sensors ability to perform in an underwater
environment.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

184 F. Murphy et al.

3.1 pH

CAAs are capable of biologically inspired, indirect communication that can be
observed by other agents. This is accomplished by sending a “quorum signal” which
is a simple RF signal that can be detected by other wandering agents (indirect
communication). When these wandering agents detect this “quorum signal” they
cooperate collaboratively to form a swarm capable of pH following utilising pH
sensors integrated on the agents. The “swarm” can thus detect and neutralize the build
up of Calcium Carbonate formations in the monitored pipe. To establish this pH
gradient following behaviour, appropriate pH sensors (ISFET) were used. These
sensors are fitted to the agent to detect point defects occurring on the wall of the pipe.
Once the point has been located by a single agent a “quorum signal” is emitted in its
vicinity and the repair actuator releases the anti-corrosion chemical to neutralize the
build up of CaCO3 in the pipe.

A circuit described by Casans et al [8] was prototyped to condition the ISFET
signal appropriately. This circuit uses precision REF200 current sources to accurately
ensure a 100uA bias current, and TL084 high input impedance operational amplifiers.
Having developed a suitable circuit for the design, the pH module was built on the
25mm stackable platform.

3.2 Proximity Detection

To enable CAAs to avoid collisions they must be able to sense the boundaries of their
vicinity and other agents in space see Fig. 7. This prevents collisions with the walls of
the pipes and other robots, to protect their electronics and external sensors. A number of
proximity sensor options were investigated. However in sourcing these sensors there are
numerous physical constraints that needed to be factored-in i.e. the available room
needed for the sensors inside the shell, the power consumption of the sensors and a
suitable sensing range underwater. Since the sensors were used on the outside of the
shell they required waterproof specifications that meant they required more power from
the battery to operate and were large in size and sometimes in weight. However after an
exhaustive search LED/Photodiode pairs were deemed the most suitable solution.

Fig. 7. Proximity sensors operating on the principle of reflections from wall and other CAAs

To facilitate collision avoidance behaviour the sensor properties for the Proximity
System consisted of LEDs and photodiodes that had the following physical properties.

• Low power consumption system – The photodiodes consume minimum (just
forA2D to convert their readings to a digital output) power, while the
operating power of the LEDs is around 120 mW.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 185

• Extremely small area of both units – Offers minimal resistance to the motion
of the agent.

• Reasonable sensing range with low cost.
• Capability of fitting design to the units’ need – Power saving scheme,

implementation etc.

3.3 Pressure Sensor and Syringe Feedback Loop

To facilitate each CAA with vertical movement capability, a Buoyancy System was
required and therefore the CAA was fitted with a LEGOTM - like designed syringe,
and a pressure sensor. The syringe when filled with water supplied sufficient extra
mass to submerge the CAA and when empty, allows the unit to float. This theory
forms the foundation in achieving neutral buoyancy. A pressure sensor was installed
to provide feedback on the “current depth”, and hence the FPGA could determine
whether the CAA is either sinking or floating.

3.4 Repair Actuator

The repair actuator is a device that can treat the calcium carbonate site with a repair
fluid/chemical, once it has being detected and located by the agent. The repair
actuator is made up of a number of subcomponents that are:

• A sealed reservoir to store the repair fluid/chemical inside the agent.
• A pump to draw the fluid from the reservoir through plastic tubing.
• A valve to prevent a flow of water from the outside into the agent.
• Nozzle to spray the liquid pumped from the reservoir over the affected area.

The reservoir is a watertight container and was designed to prevent leakage of the
repair fluid into the agent. In addition, an outlet tube to connect to the pump needed to
be attached. An air inlet also has to be attached to prevent the container from
collapsing under the pressure of the pump.

A miniaturised pump was sourced, as room within the agent was limited. A
miniature diaphragm pump with dimensions 25x16x35mm produced by Schwarzer
Precision was implemented. The pump operates on a 5V supply.

4 Field Studies of the Agents Underwater and Sensor
Characterisation

A FSM was used to monitor sensor and actuator feedback from CAAs submerged
underwater. The use of a FSM is a prior step to the development of a simulation
environment, which can be used for creating algorithmic routines for example SNNs.
The FSM were a requirement since an understanding of the robots hydrodynamics
and sensor feedback loops are an advantage when the Simulation Environment was
under design and in addition it explored the autonomy of the CAAs functionality.
This understanding provided a description of how the pH following behaviours within

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 F. Murphy et al.

the pipe operated for the CAAs and it also provided the framework for which the
learning curve of the SNN controllers needed to aspire to [9].

The SNN controllers needed for the application described in this paper are the first
of its kind and are extremely difficult to evolve under the normal paradigm of “training
without a teacher”. This is due to the harsh environment the CAAs need to navigate
through, the complexity of the robotic agent (operates in a 3-D water environment) and
the resources available on the FPGA for porting of the SNN controllers on the CAA.
However, to compliment the learning curve for the training of the SNNs, FSMs were
used to describe the operation of the CAAs within the pipe. This has established the
initial definitions and requirements for the SNN topologies, to build on.

4.1 Algorithms Generated by the FSM

The development of the FSM were initially based on the characterisation results for
the sensors, but for the completion of the FSM a trial and error method was devised
for the deployment of the CAAs in the pipe. The following section examines the FSM
for the various behaviours innate to the CAA , for pH following.

4.1.1 Buoyancy
Functional buoyancy control was delivered by recording the various depths and
altering the direction of the syringe motion (i.e. either expelling or absorbing water);
this was controlled using the FPGA. The algorithm designed for its control
continuously compares, current readings from the pressure sensor against desired
depths the agent required for the treating of scale formations. The following shows
the pseudo-code to describe such a setup.

If((CurrentDepth < DesiredDepth))
 THEN
 The CAA sinks towards the desired depth.
 Elseif((CurrentDepth - PreviousReading) = "smallest
discrete voltage step for the controller")
THEN
If the difference between the current reading and the
desired reading do not vary between 0.01 Volt
Syringe = 1; (the syringe will take in water).
 Elseif((CurrentDepth - PreviousReading) > " smallest
discrete voltage step for the controller ")
 Then;

The syringe is turned off. This ensures the syringe is activated slowly i.e. until the
currentdepth is found. The CAA is then left to sink very slowly and is compared with
the currentdepth until this too is reached. The currentdepth and the previousdepth are
also assigned to each other based on a timer.
 End if;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 187

4.1.2 Proximity
Each of the Photodiodes is identified in the algorithm and a specific Voltage threshold
point is used for deciding collision avoidance based on the reflections from the
walled surface or the LED light generated from the other agents. The design code
operates in a true/false state manner:

1. The different readings from all diodes are received and compared to a set
threshold value, which signifies whether or not the direction currently taken
should be altered.

2. The direction chosen is decided by a sequence of AND/OR statements, which are
formulated in a manner that collision is prevented if required. This procedure is
applied to the five photodiodes located at the centre of the CAA.

3. If the photodiode located at the top identifies an object, the desired depth is
altered. This method forces the Buoyancy System to establish the CAA at a new
depth. The pseudo-code description is the following.

If [(PDIODE1 > threshold) OR (PDIODE4 > threshold) OR
(PDIODE5 > threshold)) AND
 (PDIODE2 < threshold) AND (PDIODE3 < threshold)]
THEN
Activate the west position jet exhaust
Elseif[(PDIODE4 < threshold) and (PDIODE5 < threshold)
and ((PDIODE1 < threshold) and ((PDIODE2 > threshold)
or (PDIODE3 > threshold)))]
THEN
Activate the East position exhaust
Elseif [(((PDIODE4 > threshold) or (PDIODE5 >
threshold)) and ((PDIODE2 > threshold) or (PDIODE3 >
threshold)))]
THEN
Activate the North position exhaust
Elseif ((PDIODE6 > threshold))
THEN
Change the depth of the CAA.
End if;

4.1.3 pH
The algorithm code caries the identity and the sensor data. The four triangular
planes compare each other and the plane with the strongest signal indicates the
direction of motion. The code block for this system works in the following
manner

1. The recordings from each sensor are compared to one another, through a series of
true or false statements. This establishes which plane detects the strongest pH
gradient.

2. Note that the Collision Avoidance System overwrites the course of direction if
required

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

188 F. Murphy et al.

Like the other processes this procedure is also continuously ongoing for the period
the CAA is operating. Note in the following pseudo-code for the FSM the term
collision_depth refers to obstacle hasn’t been located.

If (collision_direct ='0' AND ((ph_sensor1 >
ph_sensor0) AND (ph_sensor2 > ph_sensor0) AND
(ph_sensor3 > ph_sensor0))
THEN
Activate the south position exhaust tube
Elsif (collision_direct ='0' AND ((ph_sensor0 >
ph_sensor2) AND (ph_sensor1 > ph_sensor2) AND
(ph_sensor3 > ph_sensor2))
THEN
Activate the east exhaust tube
Elsif (collision_direct ='0' and((ph_sensor0 >
ph_sensor1) and (ph_sensor2 > ph_sensor1) and
(ph_sensor3 > ph_sensor1))
THEN
Activate the west exhaust tube
End if;

4.1.4 Repair
The CAAs are continuously scanning the vicinity for calcium carbonate. Once a point
of defect has been detected and located, the repair actuator treats the area with its
chemicals. Each Collaborative Autonomous Agent has been equipped with a reservoir
to contain the chemicals, and a pump to expel the fluid over the affected area.

If (collision_direct ='1' AND ((ph_sensor0 >
ph_sensor2) AND (ph_sensor1 > ph_sensor2) AND
(ph_sensor3 > ph_sensor2))
THEN
Turn on pump
Else
Keep pump off
End if.

4.2 Results Generated by the FSM for Field-Tests

4.2.1 pH Sensor Results
Four ISFET pH sensors were arranged on the CAA so that they could detect a gradient
in all 6-degrees of freedom. Calculations for optimal positioning of sensors were carried
out and it was shown 120° separations for the four integrated sensors on the unit was the
most efficient arrangement. This arrangement is shown in Fig. 8, the four sensors
generate four equal triangular planes and have the ability to distinguish between a pH
gradient in all spatial planes within the pipe. These planes are used in the agent’s
controllers to manoeuvre the CAA to the centre of the gradient where the CAA activates
“quorum sense” and the other CAAs collaborate together to repair the defected area.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 189

Fig. 8. Position of pH sensors

Fig. 9 shows results for the CAA immersed in a homogeneous solution of pH 7
within the pipe. For demonstration purposes a solution of pH 4 was then added to this
solution. The results show that when the pH 4 is initially included the pH sensor
closest to the inserted solution has the greatest change. Then it settles while the
solution diffuses, but remains strongest relative to the other pH sensors.

Fig. 9. Results acquired for pH sensors

4.2.2 Proximity Sensor Results
The proximity sensing unit was also calibrated underwater and it was shown to provide
suitable detection for both reflections from CAA to CAA and CAA to wall. Fig. 10
shows the detection of light versus distance. From the graph a common voltage
threshold was used to activate the exhaust tube on the agent to steer away from an
obstacle. The distances found for CAA to CAA and CAA to wall detection was found at

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 F. Murphy et al.

25 and 5cm respectively. The detection distance found for the CAA-CAA was greater
since there was a direct propagation of light between the LED and Photodiode
(integrated on CAAs) whereas reflections from the wall of the pipe were less intense.

Fig. 10. Proximity Sensors calibration and sensor readings

4.2.3 Pressure Sensor and Syringe Feedback Loop
The Honeywell 26PC series psi pressure sensor is a water applicable sensor,
which varies consistently within a depth range of 0 to approx 65 centimetres. The
feedback from the sensor requires op-amp conditioning circuit, which was
connected to its output. This configuration merely obtains the difference reading
and amplifies the milli-volt output signal to a range within 0-3.3 volt. The
feedback from the pressure sensor provided a linear relationship between depth
and Voltage.

5 Testing of the SRM0 - SNN on the FPGA

This section outlines the steps required for the implementation of SNN model known
as a Spike Response Model (SRM0) and is used for purposes of verification on the
amount of resources are used up on the FPGA and it is also provides a means of
optimising the requirements of the fixed point arithmetic required for the VHDL
coding in respect to the data that will be acquired by the sensors. Although the SRM0
is an initial SNN for evaluation on how VHDL coding can be designed it also
provides an insight to how this coding can be developed in a generic manner for a
range of more sophisticated SNN nets, such as the controllers required for the CAA.
Moreover the SRM0 model also provides the most important characteristics of SNN
functionality that is; it provides appropriate kernel functions for membrane potential
calculations, kernel functions for relative refractory period calculations and a spiking
history of the neurons.

A simple 3x3x3 neuron (sensory inputs, intermediate layer, and actuator output)
SNN (SRM0) network architecture was tested and this showed that the maximum
frequency for the network is 22MHz. This is well within the requirements of the
sampling frequency of the SNN, which is only 1 KHz.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 191

6 RF System Design and Characterisation for Use Underwater

6.1 Antenna Design

When designing an antenna there are a number of desirable antenna characteristics
that are striven for. These include:

1. A low S11 at the resonant frequency of 2.45GHz. S11 is ratio of power reflected
against power absorbed (return loss).

2. High Gain and bandwidth (BW).
3. Large groundplane for higher efficiency.

However due to the particular nature of the CAA these normally imperative design
features come under a great deal of pressure from other considerations. The main
conflicting design point was the size of the antennas and the groundplanes. These had
to be kept small to allow them to fit inside the CAA, but at the same time they had to
be large enough to ensure that the antennas could perform to a good standard. The
antennas shown in Fig. 11 are used inside the CAA. It has an S11 of roughly –13dB
to –15dB in air at 2.45GHz. It has an MMCX connector, a 50Ω transmission line, and
the groundplane is 25mm*25mm. The total size of the board is 25mm*32.5mm. The
antenna component is a Lynx ANT-2.45-CHP commercial chip antenna.

Fig. 11. The antenna design used inside the CAA

6.2 Tuning the Antennae for Optimal Transmission

The proximity of the water to the antennas has a “detuning” effect. This means that
the resonant frequency is shifted from the designed 2.45GHz to something other than
that and/or the return loss is increased at the resonant frequency. In order to minimise

S 1 1 a t 2 . 4 5 f o r v a r i o u s d i s t a n c e f r o m p e r s p e x i n w a t e r

- 1 0

- 8

- 6

- 4

- 2

0
0 2 4 6 8 1 0

D i s t a n c e

S1
1

M
ag

ni
tu

de

Fig. 12. The S11 characteristic of the antenna versus distance from Perspex in water at 2.45GHz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 F. Murphy et al.

the effects of this, a number of experiments were done to find an optimal distance for
the antennas to be placed from the Perspex shell of the CAA. It was found that the
further away from the Perspex the antennas were placed the better, but given that
there is a limited amount of free space in the CAA it was necessary to select a
distance that achieved a good balance of space vs. performance. The distance chosen
was 8mm performance and beyond this distance a limited improvement was observed,
see Fig. 12.

6.3 Underwater Tests

In order to be able to characterise the system fully it was not an option to simply test
the RSSI in an open - environment. It was a requirement that the antenna system and
the fields generated by it be in full underwater testing. This would take into account a
number of issues that would be overlooked in an air test; the rate of attenuation due to
the medium and also the interference due to the reflection of the signal back into the
CAA at the water interface. In order to perform the tests under-water it was required
that a special setup was developed to hold the CAA at a specific depth and angle while
underwater. This “gantry” consisted of two parts, a frame to hold the CAA to allow it
to be rotated in order to measure all three of the principle axes, and a rotation gantry
that held the frame and allowed it to be rotated by hand to any angle on the axis. The
gantry was designed to be totally devoid of metallic parts so as to have as little effect
as possible on the parts. Every test run involved taking approximately 50 readings of
the RSSI for each antenna every 10 to 20 degrees until the entire axis was described.
The frame was then removed from the gantry and was rotated to a different principle
axis, then the gantry was returned and the readings were repeated. The advantage of
using the 2.4 GHz band was for the miniaturisation aspects of the CAA in regards to
the space allowed for the placement of antennas within the shell. However a scaling
technique was devised for achieving greater transmission coverage.

The results found represent the shape of the RF field in each plane, and although
they are not omni-directional they can be made to appear so by applying a scaling
factor Fig. 13b.

The scaling factor does not alter the actual shape of the field but can be used in
control software to make the field “appear” more omni-directional to a positioning
algorithm. The scaling factor however decreases the resolution of the positioning

Fig. 13a, 13b. An example of the RF field shapes about an axis in a water 3cm from the shell
for scaling factor 1 and 2.5 respectively

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Development of a WSN for Collaborative Agents 193

algorithm by a proportion equal to the scaling factor. The results showed a near omni-
directional pattern about the main axes. The field generated about the CAA is usable
not only for communication, but also it is usable for the function of tracking the CAA.

7 Future Work

The next phase of work will concentrate on developing evolved SNN controllers on
the FPGA. Currently the SNN controllers have been shown to function in the virtual
environment as “a proof of concept“. But more experimentation will be required to
move from a virtual environment to a real hardware setup as effects due to the amount
of resources available on the FPGA (3k system gates) mean that topologies need to be
managed succinctly. Thus the topology requires three different entities that are
defined and written in VHDL for implementation to the FPGA. These namely are (a)
Sensory Neurons that receive an "analog" i.e. non-spiking based neuron, (b)
intermediate layer/command neurons and (c) control neurons. The common goal in all
entities as stated is to minimise resource allocation so that computation of the total
induced membrane potential is calculated in fixed-point precision in each entity in the
network. So far SNNs have been ported onto the FPGA and were successfully
implemented but functionality of the SNNs on a real agent will still need to be
explored.

The wireless communications setup can also be improved by making sure that
antennas are placed in the optimal positions. This work would be extremely time-
consuming however, involving many minute movements of each antenna, exact
recording of placement and orientation as well as the chore of having to re-run each
and every axis reading for each movement.

8 Conclusions

The specification and adaptation of the sensors used in the CAA was a key factor in
monitoring what could be implemented in the design of the CAA in terms of sensors
for the pH following application. Properties such as size, power consumption, and
sensing capability i.e. range and scope all needed to be factored into the delivered
agent.

Multiple hardware modules were also needed and all these were implemented onto
the generic 25mm hardware platform. The unit as a whole was interlinked so that
software protocols were easily transferable to the hardware. In addition these modules
have a plug and play feature for reprogramming of the software if needed in the early
stages for the training of SNNs.

ISM wireless communications were delivered and are capable of underwater
communication this is a progressive result as it demonstrates RF communication can
be used for the proliferation of mobile agents capable to perceive RF signals within a
water medium.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 F. Murphy et al.

Acknowledgment

We are pleased to acknowledge the funding support from the EU Future and
Emerging Technology programme for the project entitled “Self-Organised Societies
of Connectionist Intelligent Agents Capable of Learning”, No IST-2001-38911. We
are also pleased to acknowledge our project partners: the University of Patras, Greece,
CTI, Greece and University of Essex, UK.

References

[1] J. Engel, Z. Fan, L. Zhao, J. Chen and C. Liu, “Smart Brick – A low cost, modular
Wireless Sensor For Civil Structure Monitoring “, International Conference on Computing,
Communications and Control Technologies (CCCT 2004), August 2004.

[2] W. Mass, “Networks of spiking neuron networks: The third generation of Neural Network
Models”, Neural Networks, Vol. 10(9), 1997, pp 1659-1671

[3] H Hagras, A Pounds-Cornish, Martin Colley, V. Callaghan and G. Clarke, “Evolving
Spiking Neural Network Controllers for Autonomous Robots“, Proceedings of the 2004
IEEE International Conference on Robotics & Automation, New Orleans April 2004.

[4] Ponca M and G. Scarbata, “Implementation of Artificial Neurons Using Programmable
Hardware”, Synopsys User Group Conference – SNUG Europe 2001, 12-13 March,
Munich, Germany, 2001.

[5] D. Roggen, S. Hofmann, Y. Thoma, D. Floreano, “Hardware spiking neural network with
run-time reconfigurable connectivity”, 2003 NASA/DoD Conference on Evolvable
Hardware, 2003, pp. 189-198.

[6] Vitaly Bokser, Carl Oberg, Gaurav S. Sukhatme, and Aristides A. Requicha, "A Small
Submarine Robot for Experiments in Underwater Sensor Networks," In IFAC -
International Federation of Automatic Control Symposium on Intelligent Autonomous
Vehicles, 2004

[7] J. H. Jacobi and L. E. Larsen, “Water immersed microwave antennas and their applications
to Microwave Interrogation of Biological Targets,", Microwave Theory and Techniques,
IEEE Transactions on, vol.27, no.1pp. 70-78, Jan 1979

[8] Casans, S, AE Navarro, and D Ramirez, "Circuit forms novel floating current source,"
EDN, May 1, 2003, pp 92-94.

[9] J.J. Hopfield and Carlos D. Brody, “Learning rules and network repair in spike-timing-
based computation networks", Proceedings of the National Academy of Sciences of the
USA, Jan 2004; 101: 337-342

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network
A Toolkit for the Development of WSNs

Matthias Dyer1, Jan Beutel1, Thomas Kalt1, Patrice Oehen1, Lothar Thiele1,
Kevin Martin2, and Philipp Blum2

1 Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
2 Siemens Building Technologies Group, Switzerland

Abstract. In this paper, we present the Deployment Support Network
(DSN), a new methodology for developing and testing wireless sensor
networks (WSN) in a realistic environment. With an additional wireless
backbone network a deployed WSN can be observed, controlled, and re-
programmed completely over the air. The DSN provides visibility and
control in a similar way as existing emulation testbeds, but overcomes
the limitations of wired infrastructures. As a result, development and ex-
periments can be conducted with realistic in- and outdoor deployments.
The paper describes the new concept and methodology. Additionally,
an architecture-independent implementation of the toolkit is presented,
which has been used in an industrial case-study.

1 Introduction

The validation and testing of wireless sensor network (WSN) algorithms and
software components is an indispensable part of the design-flow. However, this
is not a trivial task because of the limited resources of the nodes. Considering
further the distributed nature of the algorithms, the large number of nodes, and
the interaction of the nodes with the environment, leads to the fact that the
nodes are not only hard to debug, but also hard to access.

Access to the state of the nodes, often referred to as visibility, is fundamental
for testing and debugging. More visibility means faster development. But not
only the amount of state information, but also their quality is important. Simu-
lators for sensor networks for example, provide almost unlimited visibility. But
on the other hand they use simplistic models for the abstraction of the environ-
ment. They fail to capture the complex physical phenomena that appear in real
deployments. Therefore, the visibility of simulations is of low quality.

For this reason, researchers have built emulation testbeds with real devices.
Existing testbeds consist of a collection of sensor nodes that are connected to a
fixed infrastructure, such as serial cables or ethernet boxes. Testbeds are more
realistic than simulators because they use the real devices and communication
channels. The problem that remains is that the conditions in the field where
the WSN should be deployed in the end can be significantly different from the
testbed in a laboratory. In particular, with a cable-based infrastructure it is
impossible to test the application with a large number of nodes out in the field.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 195–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 M. Dyer et al.

In evaluations of real deployment experiments like the ones presented in
[1,2,3], a gap between simulation-emulation-results and the measured results
of the real deployment has been reported. Measured packet yields of 50%, re-
duced transmission ranges, dirty sensors and short life-times of nodes did not
match the expectations and the results obtained through simulation and emula-
tion. The unforseen nuances of a deployment in a physical environment forced
the developers to redesign and test their hardware- and software components
in several iterations. It has also been shown that sacrificing visibility, such as
switching off the debugging LEDs on the nodes in favor of energy-efficiency is
problematic during the first deployment experiments [4].

In this paper, we present the Deployment Support Network, a toolkit for de-
veloping, testing and monitoring sensor-network applications in a realistic envi-
ronment. The presented methodology is a new approach, since it is wireless and
separates the debugging and testing services from the WSN application. Thus it
is not dependent on a single architecture or operating system. In contrast to ex-
isting approaches, our method combines the visibility of emulation testbeds with
the high quality of information that can only be achieved in real deployments.
The DSN has been implemented and applied in an industrial case-study.

The remaining of the paper is organized as follows: section 2 presents related
work, sections 3 and 4 describe our approach and its realization. In section 5
an industrial case-study is presented and finally, in section 6, we discuss the
advantages and limitations of our method and conclude the paper.

2 Related Work

To support the development and test of sensor-network applications various ap-
proaches have been proposed. On the one hand, simulation and emulation testbeds
allow for observation of behaviour andperformance.On the other hand, services for
reprogrammingandremotecontrol facilitatetheworkwithreal-worlddeployments.

Simulation. Network simulators such as ns-2 [5] and Glomosim [6] are tools
for simulation of TCP, routing, and multicast protocols over wired and wireless
networks. They provide a set of protocols and models for different layers in-
cluding mobility, radio propagation and routing. TOSSIM [7] is a discrete event
simulator that simulates a TinyOS mote on bit-level. TOSSIM compiles directly
from TinyOS code allowing experimentation with low-level protocols in addition
to top-level application systems.

Emulation Testbeds and Hybrid Techniques. Indoor testbeds use the real
sensor node hardware which provides much greater sensing-, computation-, and
communication realism than simulations. In some testbeds the nodes are arranged
in a fix grid, e.g. on a large table or in the ceiling. They are connected via a serial
cable to a central control PC. In the MoteLab testbed [8], each node is attached
to a small embedded PC-box that acts as a serial-forwarder. The control PC can
then access the nodes via the serial-forwarders via ethernet or 802.11.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 197

The EmStar framework [9] with its Ceiling–Array is also an indoor testbed.
It additionally provides the ability to shift the border between simulation and
emulation. For instance, the application can run on the simulator whereas for
the communication the radio hardware of the testbed is used. This hybrid solu-
tion combines the good visibility of simulators and the communication realism
of real radio hardware. Another feature of Emstar is its hardware abstraction
layer. It allows the developers to use the same application-code for simulation
and for emulation without modification, which enables a fast transition between
different simulation- and emulation modes. The operation mode that provides
the best sensing-, computation-, and communication realism within Emstar is
called Portable–Array. It is still a wired testbed but with its long serial cables it
can be used also for outdoor experiments.

SeNeTs [10] is in many aspects similar to Emstar. Both run the same code
on simulation and on the real node hardware and both incorporate an environ-
ment model. The main difference is that in SeNeTs the simulation part runs on
distributed PCs, which improves scalability.

Services for real-world deployments. Deluge [11] is a data-dissemination
protocol used for sending new code images over the air to deployed TinyOS sensor
nodes. It uses the local memory on the nodes for caching the received images. A
disseminated buggy code image could render a network unusable. This problem
can be addressed with a golden image in combination with a watchdog-timer
[3]. The golden image is a know-working program that resides on every node,
preferably on a write-protected memory section. Once a unrecoverable state is
reached the watchdog-timer fires and the bootloader loads the golden image,
which reestablishes the operability of the network.

Marionette [12] is an embedded RPC service for TinyOS programs. With
some simple annotations, the compiler adds hooks into the code which allow
a developer at run-time to remotely call functions and read or write variables.
The main cost of using Marionette is that each interaction with a node requires
network communication. Sharing the wireless channel with the application could
adversely affect the behavior of the network algorithm that is being developed
or debugged.

3 Deployment Support Networks

The Deployment Support Network (DSN) is a tool for the development, de-
bugging and monitoring of distributed wireless embedded systems in a realistic
environment. The basic idea is to use a second wireless network consisting of
so-called DSN-nodes that are directly attached to the target nodes.

The DSN provides a separate reliable wireless backbone network for the trans-
port of debug and control information from and to the target-nodes. However,
it is not only a replacement for the cables in wired testbeds but it also imple-
ments interactive debugging services such as remote reprogramming, RPC and
data/event-logging.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 M. Dyer et al.

Target WSN

DSN backbone networkDSN Server

Client

DSN Node Target Node

Wired Target Interface

erutcetihcra tegrat
tnednepedni

erutcetihcra tegrat
tnedneped

Client IF

Fig. 1. Conceptual view of a DSN-system with five DSN-node/target-node pairs

3.1 DSN–Architecture

Overview. Figure 1 shows an overview of the different parts in a DSN-system.
On the right hand side is the DSN-node/target-node pair that is connected via
a short cable, referred to as the wired target interface. DSN-nodes are battery-
operated wireless nodes with a microcontroller and a radio-module, similar to
the target-nodes.

In the center of the figure, there is a conceptual view of the DSN with the two
separate wireless networks: the one of the DSN-nodes and the one of the target-
nodes. The network of the DSN-nodes is a automatically formed and maintained
multi-hop backbone network, that is optimized for connectivity, reliability and
robustness.

The DSN-server is connected with the DSN-backbone-network and provides
the client interface, over which the client can communicate and use the imple-
mented DSN-services. The client is a target-specific application or script. The
information flow goes from the client over the DSN-server to the DSN-nodes and
finally to the target nodes and vice versa. The DSN-server decouples the client
from the target WSN both in time and space. In particular, data from the target
nodes are stored in a database and can be requested anytime, and commands
can be scheduled on the DSN-nodes. Separation in space is given through the
client interface that allows for an IP-based remote access.

Target-Architecture-Independent Services. A key feature of the DSN-
system is the clear separation of the target-system and the DSN-services. As a
result, the DSN can be used for the development and testing of different target-
architectures. The DSN-services are target-architecture-independent. Only the
wired target interface and a small part of the software on the DSN-nodes to
control it must be adapted. However, this adaptation is typically a matter of
I/O configuration which is completed fast.

Client Interface. The DSN-server provides a flexible RPC user interface for the
DSN-services. A developer can write his own client scripts and test applications.
The client virtually communicates over the DSN with the WSN application on
the target-nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 199

Server 1

User 1

Server 2

User 2
Target WSN

DSNDSN Server

User 1 User 2 User 3

Target WSN

DSN 1 DSN 2

Fig. 2. DSN multi-user and multi-network

The DSN supports multiple users. Figure 2 shows two examples. Multiple
users can connect to one DSN-server. Different access privileges can be as-
signed to users. For example this allows for read-only access or for power-
users that are permitted to reprogram the target nodes or to reconfigure the
DSN. The second example shows two separate DSN-networks, each with its
own server. By this means, two developers can work independently in the same
location without interfering each other. Additionally this setup balances the
load onto two networks, i.e. yielding a better performance. The separation is
achieved by a unique DSN-network-ID that is checked on the DSN connection
setup.

3.2 DSN–Services

In this section we describe the debugging services that are provided by the DSN.
Each service has a part which is implemented on the DSN-server and a part that
is implemented on the DSN-nodes.

Data- and Event-Logging. Probably the most important service of the DSN
is the data- and event-logging. It gives the developers insight into the state
of the target nodes. The basic concept is as follows: The target-nodes write
logging-strings to the wired target-interface (by using e.g. printf-like statements
for writing to a debug-UART). The DSN-node receives the log-string, annotates
it with a time-stamp and stores it in a local logfile. On the other side, the DSN-
server has a logging database, where it collects the log-messages from all the
DSN-nodes. For that purpose there are two mechanisms: In pull-mode, the DSN-
server requests the log-messages, where in push-mode, the DSN-nodes sends the
log-messages proactively to the server. Finally, the user can query the database
to access the log-messages from all target-nodes.

String-based messages are very convenient for debugging and monitoring sen-
sor network applications. They can be transmitted via a serial two-wire cable to
the DSN-node with only little overhead on the target-nodes. The majority of the
work is done on the DSN-nodes: They run a time-synchronization protocol for ac-
curate time-stamping and they are responsible for transmitting the messages to
the server. However, for certain experiments, even the overhead of writing short

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

200 M. Dyer et al.

log-messages to a serial interface is not acceptable. Therefore, there is a sec-
ond mechanism which uses I/O and external interrupt-lines to trigger an event.
Events are, similar to the log-strings, time-stamped and cached in the logfile.

The caching of messages on the DSN-nodes is an important feature. It allows
for a delayed transmission to the server, which is necessary for reducing the
interference. The transmission can for example be scheduled by the server (pull-
mode) or it is delayed until an experiment has finished. It even allows the DSN-
nodes to disconnect entirely from the DSN for a certain time and then after
reconnection to send all cached log-messages.

For the sake of platform-independence, the content of the log-messages is
generally neither parsed by the DSN-nodes nor the DSN-server. This is the
responsibility of the user application written by the developer who knows how
to interpret the format. However, the DSN-nodes can optionally classify the
messages into classes such as Errors, Warnings and Debug. This can be useful if
one wishes to directly receive critical error-messages using the push-mode, while
the bulky rest of the debugging messages can be pulled after the experiment.

Commands. The counterparts of the log-messages are the commands. With
this service, string-based messages can be sent from the client to the target-
nodes. There are two types of commands: instant commands that are executed
immediately and timed commands that are schedulable. A destination-identifier
that is given as a parameter, lets the client select either a single node or all
nodes. Once the command is delivered to the DSN-server, it is transmitted im-
mediately to the selected DSN-nodes. Then, in the case of an instant command,
the message-string is sent over the wired target interface to the target-nodes. For
the timed commands, a timer on the DSN-node is started which delays the de-
livery of the message. Again, the content of the message-string is not specified. It
can be binary data or command-strings that are interpreted on the target-nodes.

Together with the data-logging, this service can be applied for the emulation of
interactive terminal sessions with the target-nodes. This service sends commands
to the nodes while the replies are sent back as log-messages to the user. In
other words, this is a remote procedure call (RPC) that goes over the backbone
network of the DSN. The wireless multi-hop network introduces a considerably
larger delay than direct wired connections. However, even with a few seconds it
is still acceptable for human interaction.

Timed commands are necessary if messages should be delivered at the same
time to multiple target-nodes. The accuracy of time-synchronization of the DSN-
nodes is orders of magnitude higher than the time-of-arrival of broadcasted mes-
sages. In addition this service can be used to upload a script with a set commands
that will get executed on the specified time.

In addition to the described commands, there is an additional command for
the wired target interface which lets the developer control the target-architecture
specific functions such as switching on/off the target power, reading the target
voltage, and controlling custom I/O lines.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 201

Remote Reprogramming. The DSN has a convenient remote-reprogramming
service. The developer uploads a code image for the target-nodes to the server,
which forwards it to the first DSN-node. The DSN-nodes have an extra mem-
ory section that is large enough to store a complete code image. They run a
data-dissemination protocol to distribute the code image to all nodes over the
backbone network. The nodes periodically send status-information to the direct
neighbors including a version number and the type of the image. By doing so,
also newly joined nodes with an old version get updated.

At any time, the developer can monitor the progress of the data dissemination.
Once all DSN-nodes have received the code image, he can, with an additional com-
mand, select a set of DSN-nodes for the reprogramming of the target-nodes. The
DSN-node is connected to the programming-port of the target-node through the
wired target interface. This programming connection and its software driver on
the DSN-nodes is one of the few parts of the DSN-system that is architecture-
dependent. It must be adapted if target-nodes with a new processor type are used.

DSN configuration and DSN status. The DSN is configurable. The user
can set different operation-modes and parameters both at setup-time and at
run-time. One such mode is the low-power/low-interference mode. When this
mode is set, the DSN-nodes switch off their radio for a given time-interval. This
might be important if the radio of the DSN and the one of the target-system
interfere with each other. If this is the case, the DSN radio should be switched
off during the experiment. As this mode is also very energy-efficient, it could
be set whenever the DSN remains unused for a known time, e.g. during the
night. This will significantly increase the life-time because only a timer on the
microcontroller of the DSN-nodes needs to be powered.

The DSN further provides the developer with the possibility to gain infor-
mation about the state of the DSN. In particular, the following information is
provided:
– a list of connected DSN-nodes with a last-seen timestamp,
– a location-identifier,
– the connectivity information of the DSN-nodes,
– the versions and types of the stored code images, and
– the battery voltages of the DSN-nodes
The location-identifier is a string that is stored on every DSN-node containing

e.g. the coordinates for positioning. It can be set via the user-interface when the
DSN is deployed.

The gathering of the DSN-status requires bandwith on the DSN backbone
network. To minimize this overhead, the DSN-server only fetches the information
from the DSN-nodes when it is explicitly requested by the client. Otherwise it
provides a cached version of the DSN-status.

3.3 Test Automation

It is often not enough to have an interactive terminal session to the nodes.
There is a need for automation and scripting support for the following reasons:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 M. Dyer et al.

(a) Experiments have to be repeated many times, either for statistically validity
or to explore different parameter settings. (b) The execution of an experiment
has to be delayed, e.g. since interference caused by human activity is minimized
during nighttime. (c) Experiments last longer than an operator can assist.

One possibility to automate tests is to send once a set of timed commands
to the DSN-nodes (see section 3.2). However, a more sophisticated method for
test automation is to use scripts that interact with the DSN-server. This has
the advantage that a script can evaluate the state of the targets during test
execution and adapt its further actions. For example, only when a particular
message from node A is received, a command to node B is sent.

The above described DSN-services are accessible as RPC functions and can
therefore be called easily from scripts. Table 1 shows some functions for the
different parts.

Table 1. Pseudo-syntax of the RPC functions

test-setup:
loadImage(type, version, code image)
targetFlash(selected-nodes)
dsnConfig([selected-nodes], property, value)
setLogMode(selected-nodes, class, push|pull)

test-execution:
instantCommand(selected-nodes, command)
timedCommand(selected-nodes, command, time)

result gathering:
getDSNStatus()
getLog(filter)

4 Realization

In the previous section, we described the general concept and methodology of the
DSN. In this section we present our implementation. Figure 3 shows an overview
of the technologies used in our implementation. See also [13] for details.

For the DSN-nodes we use the BTnodes rev3 [14]. This platform has proven
to be a good choice since it has a relatively large memory and a robust radio.

4.1 Bluetooth Scatternets

Bluetooth is not often seen on sensor-networks, due to its high energy-
consumption (BTnode: 100 mW). However, it has a number of properties that
the traditional sensor-network radios do not have and which are very impor-
tant for the DSN backbone network. Bluetooth was initially designed as a cable-
replacement. It provides very robust connections. Using a spread-spectrum
frequency-hopping scheme, it is resilient against interference and has a high spa-
tial capacity. Robustness and spatial capacity are mission-critical for the DSN.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 203

DSN-node: BTnode rev3 DSN-node SoftwareDSN Server

User App/Scripts

Hardware:
 - AVR Atmega128L μC
 - ZV4002 Bluetooth v1.2
 - CC1000 low-power radio
 - 256k SRAM, 4k EEPROM
 - 2 AA Batteries/Accu

topology
control

Bluetooth
Stack

target
interface

data diss-
emination

multi-
hop

timed
cmd

time-
sync

target
monitor

DSN
status

DSN
control

RPC

NutOS

log

DSN
Bluetooth
Scatternet

Tree/Mesh
Topology

Internet / XML-RPC

mysql
Java

Server

Java, C, C++, Perl,
Python, Ruby, PHP,...

Fig. 3. Technology overview of the DSN implementation on the BTnodes rev3

Using Bluetooth for the DSN has further the benefit that it is potentially ac-
cessible from PDAs and mobile phones. Although this not utilized in our current
implementation, it opens interesting new usage scenarios for the future.

We use the BTnut system software on the BTnodes which comes with an
embedded Bluetooth stack. For the automatic formation and maintenance of a
connected Bluetooth scatternet, we have implemented two topology control and
routing algorithms: a simple, fast tree-builder and a more sophisticated mesh
algorithm. They are both adaptive algorithms, i.e. taking network changes due
to link-losses and leaving or joining nodes into account. For more details on these
topology control implementations see [15] and [16].

4.2 Wired Target Interface

The only part of the DSN-node software that must be adapted for new target ar-
chitectures is the target interface. Common to most platforms is that data trans-
port is possible through a serial RS232-like connection. The BTnode provides
a hardware UART for this purpose. Porting this interface to similar platforms
consist of adapting the bitrate and configuring flow control.

More problematic is the programming connection, since different platforms
have quite different solutions. Some target-architectures provide direct access
to the programming port (ISP). For this case the target-interface must execute
the ISP protocol of the appropriate microcontroller type. We have this currently
implemented for the AVR and the MSP430 microcontroller family. Some other
target-architectures use the same serial port both for data transport and pro-
gramming. The appropriate control signals for the multiplexing must then be
issued by a custom function of the target interface on the DSN-node.

A third programming method is applied on the Tmote Sky target: We had
to programm the targets with a custom bootloader that is able to receive the
code image over the external pins (instead of the USB-connector). Figure 4
shows four different DSN-node - target-node pairs for which our implementation
supports the general DSN-services. For the BTnode- and the A80 target we

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 M. Dyer et al.

Fig. 4. Realized target interfaces: 4 different DSN-node–target-node pairs are shown
(from left to right): BTnode rev3, Moteiv Tmote Sky, Shockfish TinyNode 584, and
Siemens SBT A80

added additional target-monitoring functions such as target-power sensing and
control to the wired target interface.

4.3 Client Interface

All DSN-services are accessible as RPC functions. We use XML-RPC, since
it is platform independent and there exist API-libraries for a large number of
programming- and scripting languages. The application or script which uses the
DSN-services is target-architecture dependent and must therefore be written by
the user. The script in Figure 5 demonstrates how simple automation and exper-
imental setups can be written. In this example, a code image is uploaded to the
server, the data dissemination is started, and then the targets are programmed.
The DSN does not perform a version check of the targets since this is dependent
on the target-application. This must therefore be a part of the client script. In
the example it is assumed that the targets write out a boot-message, such as
”Version:X375”. The script uses both a time-string and a text-filter-string to
query the server for the corresponding log-messages.

4.4 Performance Evaluation

The performance of our implementation on the BTnodes is mostly limited by the
packet processing soft- and hardware. In fact, the microcontroller is too slow for
the packet processing at full Bluetooth-speed. Incoming packets are stored in a
receive buffer. If the arrival rate of packets is higher than the processing rate for a
certain time, packets are dropped due to the limited capacity of the receive buffer.
This affects the performance of the DSN in several ways: (a) pushed log-messages
might get lost, (b) pulled log-messages might get lost, (c) commands might get
lost, and (d) data-dissemination packets might get lost. The probability of these
cases increases with the amount of traffic on the DSN backbone network. For
many scenarios the user can control what and when data is sent on the DSN. He

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 205

user script example (Perl)

require RPC::XML::Client;

creates an xml-rpc connection to the dsn-server
$serverURL=’http://tec-pc-btnode.ethz.ch:8888’;
$client = RPC::XML::Client->new($serverURL);

sends the code image to the dsn-server with xml-rpc
$filename = ’experiment2.hex’;
$handle = fopen($filename, ’r’);
$req = RPC::XML::request->new(’dsnService.uploadFile’,

$filename,
RPC::XML::base64->new($handle));

$resp = $client->send_request($req);

initiates the data-dissemination on the dsn-nodes
$type = 1; # code image is for target nodes
$resp = $client->send_request(’dsnService.loadFile’, $filename, $type);

wrapped function that uses ’dsnService.getDSNstatus’ to wait until
all targets have received the code image
waitDataDisseminationComplete($filename);

programm the targets
$flashtime = $client->send_request(’dsnService.getServerTime’);
$resp = $client->send_request(’dsnService.targetFlash’, ’all’);
sleep(5);

collects the target-versions sent as boot-message by targets
$resp = $client->send_request(’dsnLog.getLog’,

’all’, 31, 18, ’Version: X’, $flashtime, ’’);
@versions = ();
for $entry (@{$resp}){

$entry{’LogText’} =~ m/^Version: X(\d+)/;
push(@versions, {’node’ => $entry(’DSNID’), ’version’ => $1});

}

Fig. 5. User script example in Perl

can e.g. wait for the completion of the data-dissemination bevor he starts pulling
messages. In general, cases (b)-(d) are not critical, as they can be resolved with
retransmission. However, in a scenario, where all nodes periodically generate log-
messages that are pushed simultaneously to the server, the log-messages can not
be retransmitted. So for case (a), the user wants to know the transport-capacity
of the DSN, such that he can adjust the parameters of the setup.

In Figure 6, we show the measured yield of correctly received log-messages
at the server. We varied the message-generation rate from 0.5 to 4 packets per
node per second and the DSN size from 10 to 25 nodes. Each message carries 86
bytes payload. We left this value constant, because sending the double amount
of data would result in sending two packets, which is the same as doubling
the message rate. The measurements are performed on random topologies that
were generated by the integrated tree topology algorithm. We observed slightly
different results for different topologies, but all with the same characteristic:
Starting with slow message rates, all packets are received correctly. However,
there is a certain rate, from which on the yield decreases very quickly. This cut-
off point is between 0.5 and 1 messages per second for 25 and 20 nodes, between

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 M. Dyer et al.

0.5 1 1.5 2 2.5 3 3.5 4

70

75

80

85

90

95

100

message rate [1/s]

]
%[dleiy egasse

m
n=10n=15n=20n=25

Fig. 6. Yield of correctly received log-messages that are pushed periodically to the
server for different message-rates and different sizes of the DSN. For the measurement
each node sent 100 log-messages with 86 bytes payload.

1.5 and 2 for 15 nodes, and between 2.5 and 3 for 10 nodes. Thus, if for this
streaming scenario a developer needs all pushed log-messages, he must set the
message-rate or the DSN size below this cut-off point.

5 Case-Study: Link Characterization in Buildings

Some wireless applications in buildings require highly reliable communication. A
thorough understanding of radio propagation characteristics in buildings is nec-
essary for a system design that can provide this reliability. Engineers of Siemens
Building Technologies use a BTnode-based DSN system to measure and evalu-
ate link characteristics. To this purpose, the DSN system remotely controls the
target nodes and collects measurement data. In the following, the measurement
setup is described and the type of results that can be obtained is presented. The
purpose of the case study is to proof the concept of the DSN system, therefore
the obtained data is not discussed in detail.

Experiments. The measurement setup consists of up to 30 target nodes, each
connected to a DSN node (see Figure 7). Nodes are placed at exactly the lo-
cations required by the actual application (see Figure 8). We measure signal
strength (RSSI) and frame error rates for every link between any two target
nodes. Additionally, noise levels and bit error rates are evaluated. One target
node is sending a fixed number of test frames while all the others are listen-
ing and recording errors by comparing the received frame to a reference-frame.
Two messages are generated per second. During and after the reception of every
frame, the RSSI is recorded in order to provide information about the signal and
noise levels.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 207

Fig. 7. Siemens ”Blue Box” with BTn-
ode, A80 target node and batteries. The
Adapter Board acts as a connecting cable.

Fig. 8. Blue Box placed at location de-
fined by the application

In the detailed mode, receiving target nodes create a message after every frame
reception. Figure 9 shows the data collected by one target node in detailed mode.
In summary mode, receiving target nodes only create a message after a complete
sequence of frames has been received. Figure 10 shows the data collected by 14
nodes in summary mode. In summary mode, the amount of data is significantly
reduced compared to detailed mode. This allowed us to concurrently evaluate
all 30 target nodes in the test setup. On the other hand, only detailed mode
(with maximally 10 nodes, see also Figure 6) allowed us to analyze the temporal
properties of collected data. E.g. Figure 9 shows that frames with low signal
strength do not occur at random times, but are concentrated towards the end
of the experiment. Thus channel properties seem to vary over time.

The procedure described above provides data for the links between one send-
ing target and all other targets. Test automation is used to repeat this procedure
with different senders such that finally the links between any two nodes in the

Fig. 9. Detailed mode Fig. 10. Summary mode

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 M. Dyer et al.

DSN-Server

Set Test Parameters

Send Results

Set Test Parameters

Start Receiving

Start Sending

Stop Sending

Compute Results

DSNAnalyzer

Get Results

Results

Target A Target B

Fig. 11. The automated execution of a simple test from the DSNAnalyzer which is a
client of the DSN

target system are evaluated. Test automation is also used to repeat tests with
different WSN-system parameters like e.g. transmit power. Finally tests are exe-
cuted during day- and nighttime to observe the influence of human interference.
In this case a Java application acts as the user of the DSN-system (see Fig-
ure 1). The interaction of this application with the DSN system is illustrated in
Figure 11.

Discussion. The BTnode based DSN system has proved to be very useful for
SBT’s development teams. The following advantages are most relevant to us:

– The simple interface between DSN and target nodes makes it possible to work
with existing target platforms. Alternative systems require specific hard or
software on the target side.

– The DSN-node/target-node pairs are completely wireless and thus can be
deployed quickly and even in inaccessible locations. This is important in our
use-case since we are collecting data from a wide range of buildings, some of
them in use by our customers, which excludes wired installations.

6 Conclusion

We have presented the Deployment Support Network. It is a new methodology to
design and test sensor-network applications in a realistic environment. Existing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 209

solutions fail at providing at the same time both visibility and the high quality
information from real deployments.

The DSN is wireless, which is the key difference to existing emulation testbeds.
The deployment of DSN-node/target-node pairs is much easier than handling
hundreds of meters of cables. This means that the positions of the nodes and
thus the density of the network can be chosen and adjusted quickly accord-
ing to the application requirements and is no longer dictated by the testbed
setup.

However, using wireless ad-hoc communication instead of cabled infrastruc-
ture introduces also new limitations. One is the limited range of the DSN radio.
If the range of the targets radio is larger than the one of the DSN-nodes and if
a sparse deployment with maximal distances between the nodes is to be tested,
additional DSN-nodes have to be inserted that act as repeaters. Another limi-
tation is obviously the lower throughput for debugging and control information.
The researcher must be aware of this and choose the rate of generated pushed
messages accordingly or change to pull mode if possible. In our implementation
Bluetooth provides the necessary robustness and reliability needed for the DSN.
With its high spatial capacity it allows not only for large deployments, but also
for very dense ones.

Compared to existing services for real-world deployments such as Deluge and
Marionette, the DSN is different in the sense that the services run on a separate
hardware and not on the target-nodes itself. This solution causes less inter-
ference since debugging services and the sensor-network application are clearly
separated and do not share the same computing and radio resources. The re-
sources demand of the DSN-services is different from the resources demand of
the target-application which asks for different architectures. If in an application
scenario the nodes only have to transmit a few bits once every 10 minutes with
best effort, the developer would choose an appropriate low-power/low-bandwidth
technology. Running the DSN-services over such a network is not feasible. An-
other approach is over-engineering. One could use more powerful nodes for the
sake of better visibility and flexibility during development. Running a data-
dissemination service on the target-nodes would require additional memory that
is large enough for a whole code image. Expensive extra memory that is only
used for development is no feasible option for industrial products.

During development and test, the DSN-nodes execute the services on dedi-
cated optimized hardware. After that, they can be detached from the target-
nodes. Since the services are implemented on the DSN they can be used for
different target architectures and independently of their operating system.

Both hard- and software of our BTnode-based implementation of the DSN
are publicly available at [13].

Acknowledgement

The work presented in this paper was partially supported by Siemens Building
Technologies Group Switzerland and by the National Competence Center in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 M. Dyer et al.

Research on Mobile Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation under grant number
5005-67322.

References

1. Szewczyk, R., Polastre, J., Mainwaring, A., Culler, D.: Lessons from a sensor
network expedition. In: Proceedings of the First European Workshop on Sensor
Networks (EWSN). (2004)

2. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S.,
Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods.
In: Proc. 3rd International Conference on Embedded Networked Sensor Systems
(SenSys), New York, NY, USA, ACM Press (2005) 51–63

3. Dutta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja, J., Tolle, G., Whitehouse,
K., Culler, D.: Trio: enabling sustainable and scalable outdoor wireless sensor
network deployments. In: Proc. of the fifth international conference on Information
processing in sensor networks (IPSN), ACM Press, New York (2006) 407–415

4. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from
a pilot sensor network deployment in precision agriculture. In: Parallel and Dis-
tributed Processing Symposium20th International. (2006) 8 pp.

5. ns-2: (The network simulator - ns-2) Available via http://www.isi.edu/nsnam/ns/
(accessed July 2006).

6. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: a library for parallel simulation of
large-scale wireless networks. In: Proc. Twelfth Workshop on Parallel and Dis-
tributed Simulation (PADS). (1998) 154–61

7. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable sim-
ulation of entire TinyOS applications. In: Proc. of the 1st int’l conference on
Embedded networked sensor systems (SenSys), ACM Press, New York (2003) 126–
137

8. Werner-Allen, G., Swieskowski, P., , Welsh, M.: Motelab: A wireless sensor network
testbed. In: Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks (IPSN’05), Special Track on Platform Tools and
Design Methods for Network Embedded Sensors (SPOTS), IEEE, Piscataway, NJ
(2005)

9. Elson, J., Girod, L., Estrin, D.: Emstar: development with high system visibil-
ity. Wireless Communications, IEEE [see also IEEE Personal Communications] 11
(2004) 70–77

10. Blumenthal, J., Reichenbach, F., Golatowski, F., Timmermann, D.: Controlling
wireless sensor networks using senets and envisense. In: Proc. 3rd IEEE Interna-
tional Conference on Industrial Informatics (INDIN). (2005) 262 – 267

11. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, New York, NY, USA, ACM
Press (2004) 81–94

12. Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,
P., Culler, D.: Marionette: using rpc for interactive development and debugging of
wireless embedded networks. In: IPSN ’06: Proceedings of the fifth international
conference on Information processing in sensor networks, New York, NY, USA,
ACM Press (2006) 416–423

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deployment Support Network 211

13. BTnodes: (A distributed environment for prototyping ad hoc networks)
http://www.btnode.ethz.ch.

14. Beutel, J., Dyer, M., Hinz, M., Meier, L., Ringwald, M.: Next-generation proto-
typing of sensor networks. In: Proc. 2nd ACM Conf. Embedded Networked Sensor
Systems (SenSys 2004), ACM Press, New York (2004) 291–292

15. Beutel, J., Dyer, M., Meier, L., Thiele, L.: Scalable topology control for
deployment-support networks. In: Proc. 4th Int’l Conf. Information Processing
in Sensor Networks (IPSN ’05), IEEE, Piscataway, NJ (2005) 359–363

16. Dyer, M.: S-XTC: A signal-strength based topology control algorithm. Technical
Report TIK Report Nr. 235, ETH Zurich, Switzerland (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of
Minimum Energy Coding in

CDMA Wireless Sensor Networks�

Benigno Zurita Ares, Carlo Fischione, and Karl Henrik Johansson

Royal Institute of Technology, Automatic Control Lab
Osquldas väg 10, 10044 Stockholm, Sweden

benigno@kth.se,{carlofi,kallej}@ee.kth.se
http://www.ee.kth.se/control

Abstract. A theoretical framework is proposed for accurate perfor-
mance analysis of minimum energy coding schemes in Coded Division
Multiple Access (CDMA) wireless sensor networks. Bit error rate and av-
erage energy consumption is analyzed for two coding schemes proposed
in the literature: Minimum Energy coding (ME), and Modified Mini-
mum Energy coding (MME). Since CDMA wireless systems are strongly
limited by multi access interference, the system model includes all the
relevant characteristics of the wireless propagation. Furthermore, a de-
tailed model of the energy consumption is described as function of the
coding schemes, the radio transmit powers, the characteristics of the
transceivers, and the dynamics of the wireless channel. A distributed ra-
dio power minimization algorithm is also addressed. Numerical results
show that ME and MME coding schemes exhibit similar bit error proba-
bilities, whereas MME outperforms ME only in the case of low data rate
and large coding codewords.

Keywords: Wireless Sensor Network (WSNs), Minimum Energy Cod-
ing, CDMA, OOK, Power Control, Outages.

1 Introduction

Despite the advancements in hardware and software technologies, one of the
most relevant constraints to embody in the design of wireless sensor networks is
the energy efficiency. The nodes are supposed to be deployed with reduced en-
ergy resources and without battery replacement. Motivating examples are found
in areas such as industrial automation, environmental monitoring, and surveil-
lance. Hence, the implementation of this technology has pushed the development
� Work done in the framework of the HYCON Network of Excellence, contract num-

ber FP6-IST-511368, and RUNES Integrated Project, contract number FP6-IST-
004536. The work by C. Fischione and K. H. Johansson was partially funded also
by the Swedish Foundation for Strategic Research through an Individual Grant for
the Advancement of Research Leaders and by the Swedish Research Council. Cor-
responding author: C. Fischione.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 212–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ee.kth.se/control

Energy Consumption of Minimum Energy Coding in CDMA WSNs 213

of techniques, protocols, and algorithms able to cope with the scarcity of com-
munication and computation resources of the nodes.

Several techniques have been proposed to reduce the energy consumption
of WSNs, while ensuring adequate performance. Often, cross-layer approaches
are necessary in order to take into account several interacting techniques and
protocols, as for example, distributed source coding [1] and sleep discipline [2].
In this paper, we restrict our attention to minimum energy coding schemes.
Indeed, these schemes are easily implementable in real wireless sensor networks,
and offer potentially several benefits.

Minimum Energy (ME) coding [3] is a technique to reduce the power con-
sumption in digital transmitters when it is employed with On-Off Keying (OOK)
modulation. The salient characteristic of ME coding and OOK is the reduction
of information actually transmitted, with obvious energy savings. The advan-
tages of ME coding have been investigated also in [4], where the authors pro-
posed optimal ME coding along with channel coding. In [5], a closed-form ex-
pression of the bit error probability of ME coding and OOK modulation has
been analyzed. In [6], ME coding has been applied to CDMA wireless systems.
The authors have shown that, when ME coding technique is used with CDMA,
multi access interference (MAI) is reduced. Therefore, ME enables better per-
formance not only at the transmitter side, but also at the receiver, without the
need of sophisticated correlation filters that increase the complexity and cost of
the receiver node. In [7], the Modified Minimum Energy (MME) coding strat-
egy has been proposed. MME is a variant of the ME coding strategy in that
it aims at further reducing the energy consumption with sleep policies at the
receiver.

In this paper we propose a detailed analysis of ME coding and MME coding
in terms of energy consumption in CDMA WSNs. Since CDMA wireless systems
are strongly limited in interference, we adopt a detailed model of the wireless
channel, including path loss and shadowing. In the analysis, we accurately study
the energy spent for coding, transmitting and receiving. The application of a
decentralized radio power allocation strategy, which ensures transmit power con-
sumption minimization, is addressed. Furthermore, by resorting to the extended
Wilkinson moment matching method, we are able to characterize the bit error
probability, which is a relevant factor of the total energy consumption of ME
coding and MME coding.

With respect to existing relevant contributions [3], [4], [6] and [7], our approach
is original because we provide a complete theoretical framework for character-
ization of the total energy consumption with respect to all the parameters of
the system scenario, namely: ME, MME, CDMA, wireless channel, and actual
energy consumption of the transceiver. For example, MME coding requires fre-
quent startup of the radio, which cause severe influence on the average energy
consumption for that scheme. We are able to accurately predict the perfor-
mance of both ME coding and MME coding on realistic models of wireless
sensor networks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 B. Zurita Ares, C. Fischione, and K.H. Johansson

The remainder of the paper is organized as follows. In Section 2 the system
model is described, and the main parameters and energy consumption of ME and
MME are reported along with a description of the wireless scenario. The various
components of the average energy consumption expressions are then investigated
in the following sections. In Section 3, an algorithm for the minimization of the
radio power consumption is discussed. A performance analysis of ME and MME
in terms of radio power, bit error rate and total energy consumption is carried
out in Sections 4 and 5. Numerical results are presented and discussed in Section
6. Finally, conclusions are given in Section 7.

2 System Description

Let us consider a scenario where there are K transmitter-receiver pairs of nodes
(see Fig. 1). Data sensed by a node are firstly coded according to a Minimum
Energy coding scheme. The corresponding bits are then handled by a OOK mod-
ulator: only the bits having value 1 are transmitted over the wireless interface
after a DS-CDMA spreading operation. The power level per bit is denoted with
Pi. The transmitted signal, after being attenuated by a flat fading wireless chan-
nel, is received corrupted by an additive Gaussian noise, having power spectral
density N0/2, and multi access interference caused by other transmitting nodes.
At the receiver, the signal is de-spread, demodulated, and decoded in order to
get the source data.

Tx

Rx

Tx

Rx
Tx

Rx
Tx

Rx
transmitter-receiver

pair

1
2

3

K

Fig. 1. System scenario: K pairs of nodes are simultaneously transmitting

2.1 ME Coding

With ME coding [3], each codeword of the source code-book is mapped into a
new codeword having larger length but less number of 1 (or high) bits. Let us
denote with L0 the length of the source codeword, and with LME the length
of the ME codeword. Thus, L0 < LME , and the extra bits added are called
redundant bits (see Fig. 2). The mapping is done such that source codewords
having large probability of occurrence are associated to ME codewords with less
high bits. Since only high bits are transmitted through the wireless interface,
the transmission of ME codewords enable consistent energy savings. We denote
with αME the probability of having high bits in a ME codeword. Note that, since
there are several alternatives to associate source codewords to ME codewords,
αME may assume different values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 215

ME Coding

L0=Original Codeword Length

Redundant Bits

LME = New Codeword Length (more zeros)

1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Fig. 2. Mapping of the source codewords into the codewords of the Minimum Energy
Coding

Consider the link i between a transmitter and a receiver node. The energy
consumption per ME codeword spent over the link can be expressed as follows:

E
(ME)
i = E

(tx)
i + E

(rx)
i

= P (tx,ckt)
(
T (on,tx,ME) + Ts

)
+ αMEPiT

(on,tx,ME) +

+P (rx,ckt)
(
T (on,rx,ME) + Ts

)
, (1)

where E
(tx)
i and E

(rx)
i are the average energy consumption of a node while trans-

mitting and receiving, respectively; the power consumption of the electronic cir-
cuits, while transmitting and processing a codeword, is denoted with P (tx,ckt),
and while receiving is denoted with P (rx,ckt); note that P (tx,ckt) and P (rx,ckt) do
not include the radio power, which is Pi; T (on,tx,ME) is the transmitter activity
time per ME codeword, and T (on,rx,ME) is the receiver activity time per code-
word; finally, Ts is the start up time of the transceiver. In the above expressions,
we have also modelled the major characteristic brought about by the ME and
OOK modulation: the effective transmit time is only the fraction αME of the
transmitter ontime.

With respect to the original codeword, the ME coding increases the value of
two system parameters: the codeword length, LME , and the transmitter/receiver
active time, T (on,tx,ME) and T (on,rx,ME). The increase of the transmitter ac-
tive time is negligible with respect to the radio power consumption Pi (Pi �
P (tx,ckt,ME)). Increasing the receiver active time, however, may be harmful at
the receiver itself, since the power spent to receive is approximately the same as
that used to transmit. Furthermore, the larger codeword length of ME may in-
crease the codeword error probability. These drawbacks of ME are compensated
by the reduction of the multiple access interference caused by the decreased
number of high bits.

2.2 MME Coding

The MME coding [7] exploits a structure of the codeword that allows the receiver
to go in a sleep state, where the radio electronic circuitry is switched off[2]. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 B. Zurita Ares, C. Fischione, and K.H. Johansson

the MME coding technique, the ME codewords are partitioned into Ns sub-
frames of length Ls, where each sub-frame starts with an indicator bit. When
the indicator bit, which we denote with bind, is a high bit, it indicates that there
are not high bits in that sub-frame, so there is no need for decoding, and the
receiver can go to the sleep state. Conversely, if bind is a low bit, it indicates
that there are high bits in the sub-frame, so the decoding operation must be
performed, and the receiver cannot go to sleep. In Fig. 3, the MME codeword
structure is reported. Note that the length of a MME codeword, LMME is the
same as LME . It should be noted that the MME coding may increase the length
of the codeword of Ns bits with respect to ME coding, due to presence of the
indicator bit. This drawback is, however, compensated by the potential energy
savings that MME offers at the receiver.

L0 = Original Codeword

LMME = New Codeword Length (more zeros)

Ls=Subframe Length Subframe #2 Subframe #3

Indicator bits (1: no high bits in this subframe, 0: there are)Indicator bits (1: no high bits in this subframe, 0: there are)

Ns = number of subframes

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0

ME Coding
Redundant Bits

Fig. 3. MME codeword. The original codeword is mapped into a MME codeword par-
titioned in sub-frames. Each sub-frame starts with an indicator bit.

By adopting the same parameter definition employed in (1), the energy con-
sumption per MME codeword can be modelled as follows:

E
(MME)
i = E

(tx)
i + E

(rx)
i

= P (tx,ckt)
[
T (on,tx,MME) + Ts

]
+ αMMEPiT

(on,tx,MME) +

+P (rx,ckt)
[
T (on,rx,MME) + (Ni + 1)Ts

]
. (2)

In (2) we have introduced the average number of times, denoted with Ni, that
the receiver has to awake from the sleep state. This term plays a fundamen-
tal role when evaluating the energy consumption: each time a radio receiver
component is turned on, it spends an amount of energy given by P (rx,ckt)Ts.
Since P (rx,ckt) is the largest term among the powers at the receiver, and Ts

is not negligible: when it is amplified by Ni, the resulting energy may be very
large. The consequences are that MME may not offer an adequate performance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 217

improvement with respect to ME. Note that the term Ni has not been included
in the energy model proposed in [7].

2.3 Wireless Channel

We consider an asynchronous DS-CDMA wireless access scheme, where the same
fixed bandwidth W , and hence the same chip interval Tc, is allocated to each
transmitter-receiver pair. The processing gain is denoted with G = W

Rb
= Tb

Tc
,

where the bit interval is Tb.
Following an approach similar to that found in [9] and references therein, we

can express the output of the correlation receiver of the link i as

Zi(t) = Di(t) + Ii(t) + Ng(t) , (3)

where Di(t) is the desired signal for the pair i, Ii(t) is the interference term due
to the presence of multiple transmitting nodes (causing MAI) and Ng(t) is a
Gaussian random variable with zero mean and variance N0Tb

4 . Specifically, it can
be proved that

Di(t) =

√
PiΩi,i(t)

2
Tbbi(t) . (4)

and that the variance (correlation) of the MAI term is:

E{I2
i (t)} =

K∑
j=1
j �=i

ν(t)PjΩj,i(t)
T 2

b

6G
. (5)

In the expression (4) and (5), Pi, for i = 1, . . . , K, denotes the radio power of the
transmitter node in link i. We introduce the vector P for notational convenience:

P = [P1, . . . , Pi, . . . , PK]T . (6)

The term ν(t) is a binary random variable that describes the transmission of
a high bit (ν(t) = 1) or low bits (ν(t) = 0), with probability Pr(ν(t) = 1) = α
and Pr(ν(t) = 0) = 1 − α, respectively. In particular, α = αME for ME coding,
whereas α = αMME for MME coding. The wireless channel coefficient associated
to the path from the transmitter of the link j to the receiver of the link i is
denoted with Ωj,i(t), and it is defined as

Ωj,i(t) = PLj,ie
ξj,i(t) . (7)

where PLj,i is the path loss, and eξj,i(t) is the shadow fading component over the
same path, with ξj,i(t) being a Gaussian random variable having zero average
and standard deviation σξj,i . The path loss can be further written (in dBs) as
follows

PLj,i|dB = −Pl (dr) |dB − 10n log10

(
dj,i

dr

)
. (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 B. Zurita Ares, C. Fischione, and K.H. Johansson

where dr is the reference distance and dj,i is the distance between the transmitter
in link j and the receiver of the link i, the term Pl (dr) |dB denotes the path loss
attenuation at the reference distance, and n is the path-loss decay constant. For
notational convenience, we introduce the following vector to denote the wireless
channel coefficients seen by the receiver of the pair i:

Ωi(t) = [Ω1,i(t), . . . , Ωi,i(t), . . . ΩK,i(t)]T . (9)

When a high bit is transmitted, i.e. bi(t) = 1, the quality of the received
signal is measured by the Signal to Interference plus Noise Ratio. For the generic
transmitter-receiver pair i, the SINR is defined as follows

SINRi(t) =

√
PiΩi,i(t)

2 Tbbi(t)√√√√N0Tb

4 +
K∑

j=1
j �=i

ν(t)PjΩj,i(t)
T 2

b

6G

. (10)

Note that the SINR is a stochastic process, since it is dependent on the wireless
channel coefficients Ωi(t), as well as on the binary on/off source activity ν(t).
Moreover, it can be directly influenced by the transmit powers P. When bi(t) = 0,
the SINR is obviously zero.

3 Optimal Transmission Power

In this section, we study the optimal value of the radio power Pi that appears in
(1) and (2). In order to minimize the transmission power of the overall system,
we adopt an optimization problem whose objective function is the sum of the
powers of all the transmit nodes, while the constraints are expressed in terms of
link outage probability [2], namely

min
P

K∑
i=1

Pi

s.t. P [SINRi(t) ≤ γ] ≤ P̄out , ∀ i = 1...K (11)
Pi > 0 ∀ i = 1, . . . , K .

In the optimization problem, note that γ is defined as the SINR threshold
for the computation of the outage probability. In particular, the solution of the
optimization problem ensures that the outage probability remains below the
maximum value P̄out. Furthermore, note that the computation of the outage
probability is performed with respect to the statistics of the wireless channel,
and the distribution of high bits.

To solve the optimization problem (11), we have to model the constraints
related to the outages of the links. Since the statistics of the SINR are in general
unknown, we resort to the well know extended Wilkinson moment-matching

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 219

method [9]. We approximate the SINR with an overall Log-normal distribution,
thus obtaining that

SINRi(t) = Li(t)−
1
2 ≈ e−

1
2 Xi(t) , (12)

where Xi(t) is a Gaussian process having average and standard deviation, re-
spectively, given by μXi and σXi , i.e., Xi ∼ N (μXi , σXi). The expression of
the parameters of the Gaussian distribution are provided in the Appendix. The
approximation is useful because allows for computing the outage probability
while taking into account all the relevant aspects of the wireless propagation,
the transmission power, and the distribution of high bit. It trivially results that

P [SINRi(t) ≤ γ] ≈ P
[
e−

Xi(t)
2 ≤ γ

]
= Q

(
−2 lnγ − μXi

σXi

)
. (13)

The constraint on the outage probability can be easily rewritten in order
to evidence the dependence on the transmission power coefficients. After some
algebra, a relaxation of the program (11) can be rewritten as follows:

min
P

K∑
i=1

Pi

s.t. Pi ≥ 2T−2
b PL−1

i,i

{
β

(1)
i [P−i]

}2(1−qi) {
β

(2)
i [P−i]

}− 1
2+qi

γ2, i = 1 . . .K

(14)
Pi > 0 ∀ i = 1, . . . , K ,

where qi = Q−1
(
P̄out

)
, and Q(x) = 1/

√
2π

∫ ∞
x e−t2/2dt is the complementary

standard Gaussian distribution. The expressions for β
(1)
i [P−i] and β

(2)
i [P−i] are

provided in the Appendix. The problem (14) is a relaxation since σXi has been
replaced with its square. This is equivalent to say that the outage constraints are
tighter. It is possible to see that the relaxation reduces the computational burden,
and that the solution is an upper bound of the solution of the original problem.
The program (14) is a centralized problem, in the sense that, to compute the
solution, a central node should be able to collect all information related to radio
link coefficients, it should be able to solve the program, and finally it should
broadcast the optimized powers to all other nodes. A centralized implementation
exhibits clear disadvantages in terms of communication resources. Nevertheless,
by following the same method proposed in [11], it can be proved that (14) can be
solved with a fully distributed strategy. Each receiver node can find iteratively
the optimal power as follows

Pi(n) = 2T−2
b PL−1

i,i

{
β

(1)
i [P−i(n − 1)]

}2(1−qi) {
β

(2)
i [P−i(n − 1)]

}− 1
2+qi

γ2 ,

(15)

where P−i(n−1) are the powers that the node i sees at the iteration n. The power
updating can be done asynchronously by each node, and it can be proved that for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 B. Zurita Ares, C. Fischione, and K.H. Johansson

n −→ ∞ the power converges to the optimal value of (14). The algorithm (15) is
fully distributed, since the computation of the path loss parameter, as well as the
other coefficients, is done locally by the nodes. In particular, note that the node
i has just to compute the expectations β

(1)
i [P−i(n − 1)] and β

(2)
i [P−i(n − 1)],

through (44) and (45).

4 Performance Analysis: Error Probability

In this section we characterize the average bit error probability for the ME
coding, as well as for the MME coding. The characterization is useful to express
the total energy consumption (2). With this goal in mind, we first derive the error
probability for the decision variable (3). In particular, two cases are possible: the
decision variable is decoded as a low bit, when a high bit was transmitted; or the
decision variable is decoded as a high bit when a low bit was actually transmitted.
We denote such probabilities with pi|0 and pi|1, respectively, where:

pi|0 = Pr [Zi(t) > δi(t)|bi(t) = 0,Ωi(t), ν(t)] , (16)
pi|1 = Pr [Zi(t) < δi(t)|bi(t) = 1,Ωi(t), ν(t)] , (17)

where δi(t) is the decision threshold for the variable Zi(t). The probabilities in
(16) and (17) are computed adopting the usual standard Gaussian approximation
[14], where Zi(t) is modelled as a Gaussian random variable conditioned to the
distribution of the channel coefficients and coding. Specifically, it is assumed
that:

Zi(t) ∼ N
(
μZi(t), σZi(t)

)
, (18)

where

μZi(t) =

{
μZi(t)|0 = 0 if bi(t) = 0

μZi(t)|1 =
√

PiΩi,i(t)
2 T 2

b if bi(t) = 1
, (19)

and

σZi(t) =

√√√√√N0Tb

4
+

K∑
j=1
j �=i

ν(t)PjΩj,i(t)
T 2

b

6G
. (20)

Hence, it is easy to compute the probabilities (16) and (17), which are given by

pi|0 = Q

(
δi(t)
σZi(t)

)
,

pi|1 = Q

(
μZi(t)|1 − δi(t)

σZi(t)

)
.

The bit error probability, conditioned to the channel coefficients and coding,
can be expressed as:

Φi[e|Ωi(t), ν(t)] = Pr [bi(t) = 0] pi|0 + Pr [bi(t) = 1] pi|1
= (1 − α) pi|0 + α · pi|1 . (21)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 221

Finally, averaging with respect to the distribution of the channel coefficients and
the distribution of the high bits,

Φi = EΩi(t),ν(t)

[
(1 − α)Q

(
δi(t)
σZi(t)

)
+ α · Q

(
μZi(t)|1 − δi(t)

σZi(t)

)]
. (22)

The expression (22) should be minimized with respect to δi(t). However, it has
to be remarked that it is hard to compute the expectation in (22), since the
argument is non linear. Hence, no closed-form is available for Φi, and, as a
consequence, it is difficult to find the optimal δi(t). Therefore, we resort to the
heuristic

δopt
i (t) =

μZi(t)|1
2

. (23)

Using (23), the probability of error turns out to be

Φi = EΩi(t),ν(t)

[
Q

(
μZi(t)|1
2σZi(t)

)]
= EΩi(t),ν(t)

[
Q

(
1
2
e−

1
2 Xi(t)

)]
. (24)

Let us define ζi = 1
2e−

1
2 Xi(t). Then, using the Stirling approximation [14] for the

computation of the expectation in (24), we obtain that

EΩi(t),ν(t) [Q (ζi)] ≈ 2
3
Q (μζi)+

1
6
Q

(
μζi +

√
3σζi

)
+

1
6
Q

(
μζi −

√
3σζi

)
, (25)

where, recalling the computation of the average and standard deviation of log-
normal random variables (see also the Appendix), we have that

μζi = 1
2e−

1
2 μXi

+ 1
8 σ2

Xi ,

rζi = 1
4e−

1
2 μXi

+ 1
8 σ2

Xi ,
σ2

ζi
= rζi − μ2

ζi .

(26)

4.1 Error Probability in ME Coding

The probability of bit error in the ME case, denoted with Φ
(ME)
i , can be easily

computed by using Eq. (25), along with (26), (42) and (43), where α takes the
value αME .

4.2 Error Probability in MME Coding

An analysis on the MME performance regarding its probability of error demands
a careful study which takes into account the special nature of the MME code-
word. As done in [7], we compute the average equivalent bit error probability as
the ratio between the average number of erroneous bits per MME codeword and
the codeword length, namely

Φ
(MME)
i =

ni,sfNs

LMME
, (27)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 B. Zurita Ares, C. Fischione, and K.H. Johansson

where Ns is the number of sub-frames per codeword and ni,sf is the average
number of erroneous bits in a subframe transmitted over the link i:

ni,sf =
Ls−1∑
n=1

np
(n)
i , (28)

where p
(n)
i stands for the probability of having n errors in the sub-frame, and,

recalling that each sub-frame starts with an indicator bit, it can be computed
as follows

p
(n)
i = Pr [bind = 1] Φi Pr(Ai) + Pr [bind = 0] [(1 − Φi) Pr(Ai) + Φi Pr(Bi)] ,

(29)

where the event Ai happens when there are n decoding errors in a sub-frame,
and Bi happens when there are n high bits in the codeword. Note that in (29)
we have actually considered that an error in decoding of an indicator bit has
catastrophic consequences in the entire following sub-frame.

It is not difficult to see that [7]:

Pr(Ai) =
(

Ls − 1
n

)
Φn

i (1 − Φi)
Ls−1−n

, (30)

Pr(Bi) =
(

Ls − 1
n

)
αn

MME (1 − αMME)Ls−1−n , (31)

while
Pr [bind = 0] = 1 − (1 − αMME)Ls−1 , (32)

and
Pr [bind = 1] = (1 − αMME)Ls−1

. (33)

5 Performance Analysis: Energy Consumption

5.1 ME Coding

The energy consumption of the ME coding scheme is defined as the average of
the energy consumption of all the sensor nodes, namely

E(ME) =
1
K

K∑
i=1

E
(ME)
i , (34)

where the term E
(ME)
i is defined as in (2), and it takes into account the radio

power minimization discussed in section 3.
Looking at the energy model for a system using ME coding (1) it is easy to

see that setting αME = 1, one obtains the energy consumption of the BPSK
case. The energy gain of the ME coding with respect to BPSK can be defined
as the ratio of the energy used in a BPSK system and the energy used in a ME
coding system:

ρdB =
(

EBPSK
radio

EME
radio

)
dB

. (35)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 223

5.2 MME Coding

In order to investigate the energy of MME coding, it is necessary to characterize
the values of T (on,rx,MME) and Ni in (2).

The value of T (on,rx,MME) is given by the average number of high bits in a
MME codeword times the bit time, namely

T (on,rx,MME) =
ni

Rb
. (36)

In particular, having in mind the sub-frame structure, the average number of
received high bits is given by

ni = Ns {1 + Pr [bind = 0] (1 − Φi) (Ls − 1) + Pr [bind = 1] Φi (Ls − 1)} .(37)

In order to compute the average number of times that the radio module has
to be active, first we have to consider that it has to be on for each indicator bit.
Moreover, the radio is turned active for every sub-frame, with the exception of
the case in which the previous sub-frame has been decoded (the radio is already
on). This can be expressed as follows:

Ni = Ns [1 − Pr (bind = 0) (1 − Φi) − Pr (bind = 1)Φi] . (38)

Eq. (36) and Eq. (38) can be plugged into (2) to obtain the energy con-
sumption for the generic link i. Thus, averaging over all the links, the energy
consumption for the MME case is:

E(MME) =
1
K

K∑
i=1

E
(MME)
i . (39)

Finally, the receive energy gain is defined as:

ρdB =
(

EME
radio

EMME
radio

)
dB

. (40)

6 Numerical Results

In this section we provide numerical evaluation of the bit error probability, and
the total energy consumption of ME and MME coding.

In the numerical results, we consider a system scenario with K = 10 pairs of
nodes. Each pair is randomly placed, and the minimum distance among nodes is
3 m, while the maximum distance is 15 m. We have considered a homogeneous
environment, where the path loss at the reference distance is set to Pl (dr) |dB =
55 dB, dr = 1m, n = 4, and σξj,i = 5dB, for i, j = 1 . . .K. The source data rate
is assumed to be Rb = 1Kbps. A spreading gain G = 64 has been used. We set
the value of the power spectral density of the noise to N0/2|dB = −174dBm, and
the threshold for the SINR γ = 3.1 dB. Finally, we have taken as reference the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

224 B. Zurita Ares, C. Fischione, and K.H. Johansson

6 7 8 9 10 11 12 13 14
10

−3

10
−2

10
−1

(dB)

Bi
t

E
rro

r
P

ro
ba

bi
lit

y

α
ME

 = 0.7

α
ME

 = 0.5

α
ME

 = 0.3

α
ME

 = 0.1

SINR

Fig. 4. Bit error probability for both the ME and MME cases. Note that they overlap.

CC2420 radio transceiver module by Chipcon [10], as is the one incorporated in
the Telos motes, to set the values of the energy parameters. Namely: P (tx,ckt) =
36 · 10−3 mW, Ts = 0.58 · 10−3 ms, P (rx,ctk) = 33.84 mW.

In Fig. 4, the bit error probability is reported for both the case of ME and
MME coding. Each curve is associated to a different value of α = αME = αMME .
The probabilities are reported as function of the average received SINR, and are
computed using Φ(ME) and Φ(MME) after the power minimization algorithm
(15) provided the optimal powers. Details on the numerical results of the power
minimization algorithm can be found in [16]. It is interesting to observe that
there is not noticeable difference among the ME and MME cases. This can be
explained by considering that the outage probability is the dominant term in the
computation of the bit error probability, and the optimal powers ensure that the
constraint of the outage probability is fulfilled in the same way for ME case and
MME cases. A decreasing of the bit error probability can be evidenced when α
decreases. This is obviously due to the fact that lower values of α decrease the
multi access interference.

In Fig. 5, the energy gain is reported for MME case as computed with (40)
for different values of the α coefficient and as function of the sub-frame length.
As it can be observed, an optimum value can be found for the energy gain as
function of Ls, for each value of α. The energy gain decreases as Ls increases
since this causes the receive time to be longer. Low values of α determine good
performance of MME. It is interesting to remark, however, that as α increases,
there is a sharp decrease of the energy gain. When α increases more then 0.3,
there is no advantage in using the MME coding with respect to the ME. This
can be explained by observing that large probabilities of having high bits lead
to large average number of wake-ups of the radio receiver.

Numerical values have been derived also with higher source data rate. Due to
lack of space, we cannot report them in this paper. However, it could be possible
to observe that as the source data rate increases, the MME receive energy gain
quickly decreases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 225

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

2

2.5

3

L s (b its)

En
er

gy
G

a
in

,r
dB

α = 0.7

α = 0.5

α
 = 0.3α
 = 0.2

α = 0.1

α = 0.08

Fig. 5. MME Energy Gain as function of the sub-frame length for different values of α

7 Conclusions

In this paper, a general framework for accurate analysis of the performance of ME
coding and MME coding in CDMA WSNs has been proposed. The analysis has
been carried out in terms of radio power consumption, and energy consumption
of the electronic circuit transceivers. Specifically, an accurate wireless propaga-
tion scenario has been taken into account, including path loss and shadowing. A
distributed power minimization strategy has been described and implemented.

Numerical results show that, in the scenario considered, ME and MME cod-
ings do not have significant differences in terms of bit error probability. MME
outperforms ME only for low bit rate data transmission and low probability of
high bits. Therefore, MME is a good candidate for low rate applications. How-
ever, as technology evolves and smaller startup times might be reached, MME
could be useful with higher data rates as well.

Future studies include extension of the analysis to optimizing the decision
threshold, and investigating performance for a large set of channel conditions.
Furthermore, experimental validation of the performance we have analytically
predicted will be carried out.

References

1. Chou, J., Petrovic, D., Ramchandran, K.: A Distributed and Adaptive Signal Pro-
cessing Approach to Reducing Energy Consumption in Sensor Networks. In proc
of IEEE INFOCOM, (2003)

2. Fischione, C., Bonivento, A., Johansson, K.H., Sangiovanni-Vincentelli, A.: Coop-
erative Diversity with Disconnection Constraints and Sleep Discipline for Power
Control in Wireless Sensor Networks. In: Proc. of the 63rd IEEE Vehicular Tech-
nology Conference, Vol. 2 (2006) 578–582

3. Erin, C., Asada, H.H.: Energy Optimal Codes fo Wireless Communications. In:
Proc. of the 38th IEEE Conference of Decision and Control, Vol. 5 (1999)
4446–4453

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 B. Zurita Ares, C. Fischione, and K.H. Johansson

4. Prakash, Y., Gupta, S.K.: Energy Efficient Source Coding and Modulation for
Wireless Applications. In: Proc. of the IEEE Wireless Communications and Net-
working Conference, Vol. 1 (1999) 212–217

5. Tang, Q., Gupta, S., Schwiebert, L.: BER Performance Analysis of an On-off Key-
ing based Minimum Energy Coding for Energy Constrained Wireless Sensor Ap-
plication. In IEEE ICC (2005)

6. Liu, C.H., Asada, H.H.: A Source Coding and Modulation Method for Power Saving
and Interference Reduction in DS-CDMA Sensor Networks Systems. In: Proc. of
American Control Conference, Vol. 4 (2002) 3003–3008

7. Kim, J., Andrews, J.G.: An Energy Efficient Source Coding and Modulation
Scheme for Wireless Sensor Networks. In: 6th IEEE Workshop on Signal Processing
Advances in Wireless Communications (2005) 710–714

8. Yao, S., Geraniotis, E.: Optimal Power Control Law for Multimedia Multirate
CDMA Systems. In: IEEE 46th Vehicular Technology Conference: ’Mobile Tech-
nology for the Human Race’, Vol. 1 (1996) 392–396

9. Santucci, F., Durastante, G., Graziosi, F., Fischione, C.: Power Allocation and
Control in Multimedia CDMA Wireless Systems. In: Telecommunication Systems,
Vol. 23. Springer Netherlands (2003) 69-94

10. 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver. Chipcon Products by Texas
Instruments (2006)

11. Fischione, C., Butussi, M.: Power and Rate Control Outage Based in CDMA Wire-
less Networks under MAI and Heterogeneous Traffic Sources. Technical report IR-
EE-RT 2006:033, Royal institute of Technology, Stockholm, Sweden, (Sept. 2006)

12. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distribuited Computation: Numerical
Methods, Athen Scientific, (1997)

13. Proakis, J.G.: Digital Communications. 3rd edn. McGraw Hill International Edi-
tions (1995)

14. Stüber, G.L.: Principles of Mobile Communication. Kluwer Academic Publishers
(1996)

15. R̊a de, L., Westergren, B.: Mathematics Handbook for Science and Engineering.
Studentlitteratur (2006)

16. Zurita Ares, B.: Adaptive Source and Channel Coding Algorithms for Energy sav-
ing in Wireless Sensor Networks. Master Thesis, Royal Institute of Technology,
(Sept. 2006)

Appendix

By definition, we have that

Li(t) =
2

PiT 2
b PLii

⎛
⎜⎝

K∑
j=1
j �=i

αMEPjPLj,ie
ξj,i−ξii

T 2
b

6G
+

N0Tb

4
e−ξii

⎞
⎟⎠ . (41)

The extended Wilkinson moment matching method [9], allows for the com-
putation of the average and standard deviation of Xi by matching the average
and autocorrelation of Li(t) with those of eXi(t), thus obtaining

μXi = 2 lnM
(1)
i − 1

2
ln M

(2)
i , (42)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Energy Consumption of Minimum Energy Coding in CDMA WSNs 227

σ2
Xi

= lnM
(2)
i − 2 ln M

(1)
i , (43)

with

M
(1)
i � EΩi(t),ν(t){Li} , (44)

M
(2)
i � EΩi(t),ν(t){L2

i } , (45)

where the statistical expectation is taken with respect to the distributions of
the channel coefficients and the high bit. Therefore, by recalling that Ωi(t) and
ν(t) are statistically independent, and the definition of moments of log normal
random variables [15], it is easy to show that

M
(1)
i =

2
PiT 2

b PLi,i
β

(1)
i [P−i] , (46)

M
(2)
i =

4
P 2

i T 4
b PL2

i,i

β
(2)
i [P−i] , (47)

where

βi
1 [P−i] =

K∑
j=1
j �=i

αPjPLj,ie
1
2

(
σ2

ξj,i
+σ2

ξi,i

)
T 2

b

6G
+

N0Tb

4
e

1
2 σ2

ξi,i , (48)

βi
2 [P−i] =

K∑
j=1
j �=i

α2P 2
j PL2

j,ie
2
(

σ2
ξj,i

+σ2
ξi,i

)
T 4

b

36G2 +
N2

0 T 2
b

16
e
2σ2

ξi,i

+
K∑

j=1
j �=i

K∑
k=1
k �=i

k �=j

α2PjPkPLj,iPLk,ie
1
2

(
σ2

ξj,i
+σ2

ξk,i
+4σ2

ξi,i

)
T 4

b

36G2

+
N0Tb

2

K∑
j=1
j �=i

αPjPLj,ie
1
2

(
σ2

ξj,i
+4σ2

ξi,i

)
T 2

b

6G
. (49)

In previous expressions, we have defined

P−i = [P1, P2, . . . , P(i−1), P(i+1), . . . , PK]T , (50)

with the purpose to evidence that nor in β
(1)
i [P−i], nor in β

(2)
i [P−i] there is

dependence with the transmission power of the link i.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol
for Dense Wireless Sensor Networks

G.P. Halkes and K.G. Langendoen

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, The Netherlands

{g.p.halkes, k.g.langendoen}@tudelft.nl

Abstract. This paper introduces Crankshaft, a MAC protocol specif-
ically targeted at dense wireless sensor networks. Crankshaft employs
node synchronisation and offset wake-up schedules to combat the main
cause of inefficiency in dense networks: overhearing by neighbouring
nodes. Further energy savings are gained by using efficient channel polling
and contention resolution techniques.

Simulations show that Crankshaft achieves high delivery ratios at low
power consumption under the common convergecast traffic pattern in
dense networks. This performance is achieved by trading broadcast band-
width for energy efficiency. Finally, tests with a TinyOS implementation
demonstrate the real-world feasibility of the protocol.

Keywords: Wireless Sensor Networks, MAC Protocol, Dense Networks.

1 Introduction

In Wireless Sensor Networks (WSNs) energy efficiency is a major considera-
tion. Sensor nodes are expected to operate for long periods of time, running of
batteries or ambient energy sources. Because the biggest consumer of energy
is the radio, many researchers have focused on creating energy efficient MAC
protocols [1,2,3,4,5,6,7].

Recent experiences with real-world deployments [8] have shown that the num-
ber of neighbours in WSNs can be higher than 15, which exceeds the 5–10 that
MAC protocol designers have typically assumed. The “smart-dust” vision of
WSNs also incorporates these dense deployments. Dense deployments have their
own specific challenges, due to the high connectivity. Below we list the most
important problems in current MAC protocols arising from dense networks:

Overhearing. Overhearing of messages destined for other nodes is a source
of energy waste in any deployment. However, in dense deployments there
are more neighbours that will overhear a message which exacerbates the
problem. Furthermore, having more neighbours also means there may be
more messages to overhear.

Communication grouping. Several protocols, like S-MAC [1] and T-MAC [2],
group communication into active parts of frames. This is done to allow the

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 228–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 229

network to go to sleep during the inactive parts of frames. The approach
has a significant drawback: the grouping increases contention and collisions.
Collisions cause retries, which in turn increases the traffic load. Furthermore,
for adaptive protocols like T-MAC the increased traffic will keep nodes awake
longer without increasing useful energy consumption.

Over-provisioning. TDMA protocols like LMAC [6] schedule send-slots for
participating nodes. However, if a node has nothing to send, the slot goes
unused. In a dense deployment, a frame has to be split into many slots to
allow all nodes to participate in the network. Most of these slots go unused,
but as a node has to wait for its send slot before it is allowed to send, latency
increases and throughput decreases. Also, all the non-sender nodes will have
to listen for at least a short amount of time to check if the scheduled sender
is actually using the slot, and to check if they are being addressed by the
sender.

Neighbour state. Protocols that save neighbour state as for example PMAC [7]
and WiseMAC [9] do, also run into problems in dense deployments. Because
in a dense deployment each node has many neighbours, the MAC protocol will
have to either maintain a lot of state or discard some of the neighbours. Main-
taining state for over 20 neighbours is undesirable as it uses precious RAM.
However, discarding neighbour information means that communication with
certain nodes is not possible or at least severely hindered. Furthermore, the
routing protocol also maintains a neighbour list. If the neighbour list of the
routing layer contains different nodes than the neighbour list of the MAC pro-
tocol, considerable problems arise.

This paper introduces the Crankshaft MAC protocol, which is specifically
designed to perform well in dense deployments. It reduces overhearing and
communication grouping by letting nodes power-down their radios alternately,
rather than simultaneously. It does not keep per-neighbour state and receive-
slot scheduling ensures that over-provisioning is bounded. The trade-off is that
the maximum throughput is reduced, especially for broadcast traffic. For many
applications however, this trade-off is acceptable.

The rest of this paper is organised as follows: First we will present related
work. Then, in Section 3 we discuss the design of the Crankshaft protocol. In
Section 4 we discuss the setup of our simulations, followed by the simulation
results in Section 5. In Section 6 we present our results with our TinyOS imple-
mentation. Finally in Sections 7 and 8 we provide more discussion of the results
and finish with our conclusions and future work.

2 Related Work

Many MAC protocols have been designed for WSNs. Below we present a selection
of protocols that have relevance to our new Crankshaft protocol.

One of the earliest proposals is Low Power Listening [3] (LPL). LPL uses a
simple Data/Ack scheme to ensure reliability. This is combined with efficient
channel polling to reduce the energy spent on listening for incoming messages.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

230 G.P. Halkes and K.G. Langendoen

Instead of simply turning the radio on, LPL periodically checks the channel.
To ensure that messages are properly received the preamble of each message is
stretched to include an additional poll period. The B-MAC [4] protocol is an
evolution of LPL, whereby the application can tweak the poll period depending
on its bandwidth usage.

The channel polling mechanism of LPL has been further refined in the SCP-
MAC [5] protocol. It uses channel polling, but it synchronises all nodes to poll at
the same time, essentially implementing a slotting mechanism. This allows po-
tential senders to do contention resolution before the intended receiver wakes up.
Furthermore, the message preambles do not have to be stretched for a complete
poll period because the poll moment is known. Crankshaft employs a mechanism
of channel polling very similar to the SCP-MAC protocol.

Several TDMA protocols have also been developed. A good example is the
LMAC [6] protocol. Contrary to many other TDMA protocols, the LMAC pro-
tocol uses a completely distributed slot assignment mechanism. Each slot owner
sends at least a packet header in the slot the node owns. Neighbouring nodes
listen to the start of each slot, and detect which slots are free. However, for a
TDMA protocol it is required that a slot is not reused within a two-hop neigh-
bourhood. The LMAC protocol therefore includes a bitmap with all the slots
assigned to a node’s neighbours in the header. By combining the bitmaps of all
neighbours, a node can determine which slots are free within a two-hop neigh-
bourhood. Crankshaft also uses frames and slots, but schedules receivers rather
than senders. However, the mechanisms employed by LMAC to achieve synchro-
nisation, framing and slotting are used in Crankshaft.

Pattern MAC [7], or PMAC, also divides time into frames. Each frame con-
sists of two parts: the Pattern Repeat part and the Pattern Exchange part. Both
parts are divided into slots. During the Pattern Repeat part, nodes follow the
sleep/wake pattern they have advertised. Nodes also wake up when a neighbour
for which they have a packet to send has advertised it will be awake during a par-
ticular slot. Nodes advertise their chosen patterns during the Pattern Exchange
part. Each slot in the Pattern Exchange part is long enough to send a node’s pat-
tern information and nodes have to contend for these slots. To enable all nodes to
send their pattern information, the Pattern Exchange part has as many slots as
the maximum number of neighbours a node is expected to have. The sleep/wake
patterns are adapted to the traffic going through a node, to achieve maximal
energy savings. The PMAC protocol is similar to the Crankshaft protocol in that
it also schedules nodes to be awake for reception on a slot basis. However, the
PMAC protocol requires nodes to exchange and store schedules.

Although unrelated to the Crankshaft protocol, we also briefly introduce the
S-MAC and T-MAC protocols, as they have become a standard benchmark
for WSN MAC protocols. The S-MAC [1] protocol attacks the idle listening
problem by introducing a coarse duty-cycling mechanism. It divides time into
frames with an active part and a sleeping part. All communication between
nodes is performed in the active part. In a later paper [10] the S-MAC protocol
was extended with “adaptive listening”. This incarnation of the S-MAC protocol

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 231

uses the same idea as the T-MAC [2] protocol: group all communication at the
start of the active period, and go to sleep if no more activity is sensed. This
adapts the length of the active period to the available traffic.

When employed in dense networks all the above protocols suffer from one or
more of the problems signalled in the introduction. This results in suboptimal
energy use.

3 Crankshaft

Having signalled the problems MAC protocols face in dense wireless-networks,
we designed the Crankshaft protocol. The basic principle of the protocol is that
nodes are only awake to receive messages at fixed offsets from the start of a
frame. This is analogous to an internal combustion engine where the moment
a piston fires is a fixed offset from the start of the rotation of the crankshaft.
Allowing different nodes to wake up for reception at different offsets from the
start of the frame means that there are fewer nodes overhearing messages and
spreads out the communication between unrelated receivers. Below we detail the
working of the Crankshaft protocol.

The Crankshaft protocol divides time into frames, and each frame is divided
into slots. There are two types of slots in the Crankshaft protocol: broadcast
slots and unicast slots. During a broadcast slot all nodes wake up to listen for
an incoming message. Any node that has a broadcast message to send contends
with all other nodes to send that message. A frame starts with all the unicast
slots, followed by the broadcast slots.

Each node also listens for one unicast slot every frame. During that slot a
neighbouring node can send a message to that node, provided it wins the con-
tention. The slot a node listens to is determined by the node’s MAC address.
Therefore, a node wanting to send a message knows precisely in which slot the
destination wakes up. Crankshaft uses a Data/Ack sequence for unicast mes-
sages, and the slot length is such that it is long enough for the contention period,
maximum-length data message and acknowledgement message. If the sender does
not receive an acknowledgement, the protocol is set to retry each message three
times in subsequent frames. However, to reduce contention when retrying the
transmission the node will only retry in the next frame with a probability of
70%. Otherwise it will wait for another frame.

Special provisions are made for base-station or sink nodes. Sink nodes will
listen to all unicast slots. The rationale for this is that the sink is the destination
for most traffic in the network and therefore requires more receive bandwidth.
Furthermore, the sink is typically connected to either a much larger battery or
mains power, which will allow it to spend more energy. To allow other nodes to
determine whether a neighbour is a sink node, sink nodes use specially reserved
addresses. For example, in TinyOS node 0 is always considered a sink node.

Although many complicated methods of slot assignment are possible (e.g.
Time Division Hashing [11]), we have chosen to use a simple mechanism to limit
the amount of processing power required. Each frame has n unicast slots, and
the slot assignment is performed by calculating MAC address modulo n. Using

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 G.P. Halkes and K.G. Langendoen

a static slot assignment like this may result in two neighbours being assigned
the same slot. To allow such neighbours to communicate, nodes are allowed to
act as senders in their own receive slot. A node that acts as a sender in its own
receive slot will revert to receive mode if it loses contention.

Poll Receiving Preamble Message Acknowledgement

Sender A

Sender B

Receiver Poll

Receiver

Contention Window Message Exchange Window

Fig. 1. Contention and message exchange in the Crankshaft protocol

Clearly, using frames requires that nodes are synchronised. Synchronisation
can be achieved both through a reference node (i.e., the base-station or sink
node), or through a distributed algorithm like GSA [12]. This synchronisation
can also be used to achieve increased energy savings. Nodes need not wake up
for an entire slot, but only for a small amount of time at a fixed offset to the
start of the slot (see Figure 1). The period between the start of the slot and
the moment the listening node turns on its radio is used to resolve contention.
A node that wants to send a message in a particular slot chooses a moment in
the contention window. The sending node listens for a short amount of time just
prior to its chosen moment to detect other nodes contending for the same slot. If
no other nodes are sending, the sending node starts sending a preamble to notify
other nodes of its intention to send. Shortly after the receiving node is known to
wake up, the sending node transmits the start symbol and the actual message.
This is similar to the channel polling mechanism in the SCP-MAC protocol [5].
Note that during the contention window only the contending senders are awake,
and only the winner of the contention is awake for more than a short poll. This
results in very energy efficient contention resolution.

To improve contention resolution, the Crankshaft protocol also employs the
Sift distribution [13] for choosing the moment to start sending. The Sift distri-
bution is essentially a truncated geometric distribution, which results in fewer
collisions than using a uniform distribution. Using Sift also reduces the average
amount of time between the start of sending and the wake up moment of the
receiver, saving even more energy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 233

The header for Crankshaft packets consists of a one byte length field, two
byte to and from addresses, a one byte message type field, three bytes of clock
synchronisation information, and two CRC bytes. For broadcast messages, the
type field is set to broadcast and the to address is omitted. In our simulations,
the synchronisation information contains the number of hops to the reference
node, and the current (estimated) clock at the reference node.

Although not implemented in our simulations or real-world implementation,
the Crankshaft protocol can use address filtering to reduce overhearing. A node
would then simply turn of its radio after receiving the to address if the message
is for another node.

4 Simulation Setup

To evaluate the Crankshaft protocol we created an implementation in our OM-
NeT++ [14] based simulator called MiXiM. The simulator contains a model of
the EYES wireless sensor node, which includes an RFM TR1001 radio. The radio
model is an SNR-based model, on top of a simple path-loss propagation model.
For timing the nodes use a 32KHz crystal, and the nodes are powered by two
1.5V AA batteries supplying 3 V.

For our experiments we use the layout of a real-world potato-field experi-
ment [8]. This setup includes 96 nodes on a field of approximately 90×50 meters.
The simulated nodes have a radio range of 25 meters, which is similar to the
radio range in the real-world experiment. The base station is situated near a
corner. Average connectivity in the network is approximately 17.3.

In our simulations we have included five protocols: Low Power Listening
(LPL), T-MAC, LMAC, SCP-MAC*, and of course Crankshaft. The SCP-MAC*
protocol is our variation of the SCP-MAC protocol. Instead of using two con-
tention periods, one of which the receiver overhears, it uses the Sift distribu-
tion for a single contention period before the receiver wakes up. This way the
SCP-MAC protocol can easily be implemented as a variation of the Crankshaft
protocol, where each slot is a receive and broadcast slot at the same time, and
acknowledgements are disabled.

We have focused our simulations on traffic patterns we consider most impor-
tant for wireless sensor networks: convergecast and broadcast flood. The con-
vergecast pattern is the pattern used in most monitoring applications. All nodes
periodically send data to a sink node, which then processes the data or stores
the data for further processing. Broadcast floods are typically found in routing
protocols and in distributing queries over the network.

Table 1 lists the simulation parameters. Each simulation lasts 200 seconds of
simulated time and the results are the average of 20 runs with different random
seeds. Routing is done using a static routing table. Therefore there is no routing
traffic exchanged during the simulation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 G.P. Halkes and K.G. Langendoen

Table 1. Simulation parameters

General
Message payload 25 bytes

Radio
Effective data rate 61 kbps
Preamble + start byte 433 μs
Transmit 12 mA
Receive 3.8 mA
Sleep 0.7 μA

LPL
Sample period 300 μs

T-MAC
Frame length 610 ms
Contention window 9.15 ms
Packet header 8 bytes
Maximum data length 250 bytes
Activity timeout 15 ms

LMAC
Maximum data length 64 bytes
Slots per frame 80
Packet header 20 bytes

SCP-MAC* and Crankshaft
Contention window 9.15 ms
Poll length 300 μs
Maximum data length 64 bytes
Sift nodes parameter 512
Packet header (max.) 11 bytes

Crankshaft specific
Unicast slots 8
Broadcast slots 2

5 Simulation Results

Below we present our simulation results. In Section 5.1 we present the results for
the convergecast pattern followed by the results for the broadcast flood pattern
in Section 5.2. In Section 5.3 we revisit the convergecast pattern results and
show how the latency of the Crankshaft protocol can be improved.

5.1 Convergecast

Figure 2 shows the results of our convergecast experiments. It is clear that the
LPL protocol has the highest delivery ratio (top graph) except for high message
rates, but at the expense of consuming a lot of energy (middle graph). The high
energy consumption is due to the the high connectivity which causes many nodes
to overhear each transmission. As nodes using LPL can send their message any
time, i.e. they do not have to wait for a slot or frame to start, the latency remains
low until the network is saturated (bottom graph).

The delivery ratio of the SCP-MAC* protocol is clearly adversely affected
by the lack of acknowledgement messages for low message rates. Even for low
message rates SCP-MAC* does not achieve perfect delivery. However, the lack
of acknowledgements also means that there are fewer messages to send. For high
messages rates the lack of acknowledgements is beneficial. For protocols using
acknowledgements the increasing collisions at high message rates will induce
more retransmissions, which in turn increase the network load. This effect can
be seen in that the SCP-MAC* curve does not drop like the LPL and Crankshaft
curves do. SCP-MAC*’s energy consumption is much better than LPL, but for
high message rates increases quickly as well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 235

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
el

iv
er

y
ra

tio

Load [messages/node/sec]

LPL
T-MAC
LMAC

Crankshaft
SCP-MAC*

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ne

rg
y

co
ns

um
ed

 [
av

g.
 m

W
/n

od
e]

Load [messages/node/sec]

LPL
T-MAC
LMAC

Crankshaft
SCP-MAC*

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
vg

. p
er

 m
es

sa
ge

 la
te

nc
y

[s
ec

]

Load [messages/node/sec]

LPL
T-MAC
LMAC

Crankshaft
SCP-MAC*

Fig. 2. Performance under convergecast traffic: delivery ratio (top), energy consump-
tion (middle) and latency (bottom)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

236 G.P. Halkes and K.G. Langendoen

Compared to the LPL protocol, Crankshaft’s delivery ratio starts to drop
at lower message rates. This is caused by limiting the per-node receive band-
width through selecting only one receive slot per frame. For low message rates
Crankshaft does manage perfect delivery. The bandwidth limitation does mean
that for medium and high message rates the Crankshaft protocol cannot achieve
the high delivery ratios of LPL and SCP-MAC*.

The Crankshaft protocol is very energy efficient. It consumes a factor of 3.5
less energy than SCP-MAC*. There are two factors which contribute to the
energy efficiency: firstly, because only a subset of the nodes is awake in each slot
overhearing is reduced. Secondly, contention is reduced. When using SCP-MAC*
and node A wants to send to node B and node C wants to send to node D, and A
and C are within communications range, nodes A and C contend for the right
to send. However, when using Crankshaft nodes B and D generally wake up in
different slots, automatically resolving the contention between nodes A and C.

LMAC suffers from the need to assign a contention-free slot to all nodes in
the network. To allow such an assignment to exist 80 slots are required. Even at
low message rates the LMAC protocol does not achieve a perfect delivery ratio.
Network congestion caused by low per-node bandwidth prevents this. The en-
ergy consumption remains nearly constant, because the LMAC protocol already
saturates at low message rates. The small increase in energy consumption is due
to more messages that are sent one hop, only to be discarded because of full
message queues at the receiver. The large number of slots also induces a high
message latency for the LMAC protocol.

Finally, T-MAC is unable to cope with the flood of messages directed towards
the sink node. The aggressive sleep policy is causing nodes to go to sleep too
often, which hinders throughput. Although latency seems low for high message
rates, this is caused by only the nodes near the sink being able to reach the sink.
The aggressive sleep policy does provide low energy consumption, even though
the T-MAC protocol suffers from communication grouping and overhearing.

Of all the protocols compared, SCP-MAC* has the lowest latency. Again this
is caused by the lack of acknowledgements and retries. Messages are not kept
in queues waiting for retransmissions of other messages, which means latency is
kept down. Crankshaft’s latency rises quickly as the delivery ratio drops. This is
partly caused by messages having to wait in queues due to congestion, and partly
caused by messages having to wait a full frame (150ms) when contention is lost.
However, Crankshaft’s latency can be improved, as we will show in Section 5.3.

5.2 Broadcast Flood

With our second experiment we investigate the performance under broadcast
flood traffic. In this experiment the sink node initiates the floods. The delivery
ratio is calculated as the total of unique flood messages received by all nodes,
divided by the total of unique messages that should have been received by all
nodes. To allow nodes to determine the uniqueness of a message, each message
contains a serial number. Nodes compare the serial number in the message with
the highest serial number received so far. If the serial number in the message is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 237

lower or equal, the message is discarded. Note that this may result in messages
not previously received being discarded, if a message with a higher serial number
has already been delivered. For this to happen, collisions or link errors must have
resulted in the failed reception of a lower numbered message first.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

D
el

iv
er

y
ra

tio

Floods per second

LPL
T-MAC
LMAC

Crankshaft
SCP-MAC*

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

E
ne

rg
y

co
ns

um
ed

 [
av

g.
 m

W
/n

od
e]

Floods per second

LPL
T-MAC
LMAC

Crankshaft
SCP-MAC*

Fig. 3. Performance under broadcast-flood traffic: delivery ratio (top), energy con-
sumption (bottom)

Figure 3 shows the delivery ratio (top) and energy consumption (bottom)
for all protocols under the broadcast flood traffic pattern. LPL outperforms all
other protocols in terms of delivery ratio for high message rates, but at the
expense of high energy consumption. Again, because it does not use any slotting
or framing it can quickly move messages through the network. Although it uses
much energy, the energy is mostly put to good use.

The T-MAC curve shows a remarkable artifact. As the amount of traffic in
the network increases, so does the delivery ratio. The cause is again T-MAC’s

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 G.P. Halkes and K.G. Langendoen

aggressive sleep policy. In low traffic conditions, most of the network is asleep
after the sink initiated the broadcast flood. Although all nodes that heard the
sink’s broadcast repeat the message, the sleeping part of the network does not
receive most of these. Depending on the collisions and back-off, parts of the
network may not receive any of these messages at all. Increasing the traffic
load will keep more nodes awake for more time, increasing the number of nodes
receiving re-sends. However, it also increases the chance of messages arriving out
of order, thereby causing nodes to disregard previously unseen messages arriving
later.

LMAC’s performance is not hampered by the 80 slots in this scenario, because
all nodes need to send the same number of messages. Therefore, there is little
over-provisioning. Protocols like LPL and SCP-MAC* can support more simul-
taneous transmissions than LMAC, because they do not require all nodes in a
two-hop neighbourhood to remain quiet. Of course this leads to collisions, but
because every message is sent multiple times, although by different nodes, this
is not a problem. If a node does not receive the first transmission, it probably
receives a second or third. Hence, the LPL and SCP-MAC* protocols outperform
LMAC.

The Crankshaft protocol shares the SCP-MAC* characteristics in the broad-
cast case. However, because only two out of every 10 slots are broadcast slots
Crankshaft can cope with roughly one sixth of the traffic that SCP-MAC* can.
It only uses approximately one sixth of the energy as well. Crankshaft’s broad-
cast flood performance can be tuned to the amount of broadcast flood traffic is
expected, by increasing the number of broadcast slots. Of course the broadcast
performance is then traded for unicast performance, as unicast traffic will receive
a smaller share of the available time.

5.3 Crankshaft Latency

The average message latency for the Crankshaft protocol under convergecast
traffic increases quickly as the number of messages per node per second exceeds
0.15. However, the design of the Crankshaft protocol leaves an option to improve
the latency. Recall that the cause of the quickly increasing latency is that a node
that loses contention or does not receive an acknowledgement has to wait for an
entire frame to retry. Given that a dense network provides many alternate paths
to the sink, a node that loses contention or does not receive an acknowledgement
could also try to send its message to another next hop.

Of course the routing layer has to cooperate with the Crankshaft protocol
to make this work. To this end the interface between the routing layer and the
MAC protocol is augmented. First of all, the routing layer can query Crankshaft
about which of a list of neighbours wakes up first. Secondly, Crankshaft will
return a message that it could not deliver in the first try to the routing layer.
That is, it will not block and try at some later moment as most MAC layers do.
The routing layer will then decide if and to whom to retry sending the message.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 239

Figure 4 shows the latency (bottom) for the Crankshaft protocol with the low-
latency option, marked Crankshaft LL. For reference the results for the regular
Crankshaft protocol and the SCP-MAC* protocol are repeated.

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ne

rg
y

co
ns

um
ed

 [
av

g.
 m

W
/n

od
e]

Load [messages/node/sec]

Crankshaft
Crankshaft LL

SCP-MAC*

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
vg

. p
er

 m
es

sa
ge

 la
te

nc
y

[s
ec

]

Load [messages/node/sec]

Crankshaft
Crankshaft LL

SCP-MAC*

Fig. 4. Crankshaft energy consumption (top) and latency (bottom) with low-latency
option

Even for Crankshaft’s low-latency version, average latency starts to increase
noticeably at approximately 0.15 messages per node per second. The latency
is however reduced to approximately 37% of the regular Crankshaft protocol’s
latency. The increase at 0.15 is almost entirely due to a small group of 15 nodes
that are in the corner opposite the sink. These nodes do not have many next hop
neighbours. As the network load increases these nodes are having increasingly
more difficulty in sending their messages to the next hop. Average latency for the
messages for these nodes increases to some eight seconds and more. From 0.25
through 0.35 messages per node per second the increase in latency stops. On this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 G.P. Halkes and K.G. Langendoen

interval the number of messages that arrive at the sink from the 15 distant nodes
decreases in such a way that it compensates for the increased latency. Most of
the other 80 nodes still have average per message latencies in the range of 0–0.7
seconds. Using the regular Crankshaft protocol, approximately half of the nodes
already have average per message latencies (much) larger than one second. For
message rates larger than 0.35 the other 80 nodes are also seriously affected by
the increasing network load. This is reflected by the increasing latency.

As can be seen from the top graph in Figure 4, Crankshaft’s energy consump-
tion does not change for message rates below 0.35 messages per node per second.
At higher rates the energy consumption does increase significantly, to 2.7 times
the energy consumption without the low-latency option at a rate of 0.8 mes-
sages per node per second. The congestion in the network is causing increasing
numbers of retransmissions, which consume much energy. The delivery ratio is
affected very little by the low-latency option. For message rates between 0.15
and 0.5, at most 7 percentage points are gained, while at 0.8 approximately 10
percentage points are lost.

6 TinyOS Implementation

To demonstrate the real world feasibility of the Crankshaft protocol, we have
created an implementation of Crankshaft for the TinyOS operating system. We
have tested our implementation by running a convergecast scenario on our 26
node testbed consisting of mica2 clones named TNOdes. The nodes in our testbed
can all hear one another, but not all pairs of nodes have good links. We have
created a static routing table in which 12 of the 26 nodes use other nodes to for-
ward messages to the sink. All nodes, with the exception of the sink, repeatedly
send messages to the sink at fixed intervals. For comparison, we have included
our implementations of T-MAC and LMAC, and the default MAC protocol for
mica2 nodes, i.e. BMAC.

Table 2 shows the parameters for the experiment and the protocols. We have
strived to make the parameters match those of our simulations as closely as
possible, but the hardware used does dictate many of the protocol timings. Also,
the physical layers in our TinyOS framework include extra header fields, and
the time synchronisation fields take five bytes instead of three. Therefore the
packet headers are longer than in simulation. Furthermore, the BMAC protocol
as implemented in TinyOS does not provide for retries, where the simulated
LPL protocol does. The Crankshaft protocol is implemented without the use of
the Sift distribution. A standard uniform distribution is used instead for ease of
implementation.

The experiments only show the results of a single run, due to time constraints.
Therefore it is not possible to draw firm conclusions from these results. However,
the results do provide an indication of the performance.

Figure 5 shows our results. The first thing to note is that even for low mes-
sage rates, none of the protocols achieves perfect delivery. This is due to the use of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 241

Table 2. Real-world experiment parameters

Experiment
Time per message rate 5 min
Message payload 10 bytes
Maximum data length 29 bytes
(all protocols)

Radio
Effective data rate 19 kbps
Preamble + start byte 2.1 ms

T-MAC
Frame length 610 ms
Contention window 5.8 ms
Packet header 18 bytes
Activity timeout 18 ms

LMAC
Slots per frame 32
Packet header 24 bytes

Crankshaft
Contention window 5.8 ms
Poll length 4 ms
Packet header 18 bytes
Unicast slots 8
Broadcast slots 2

BMAC
Sample period 20 ms

non-perfect radio links. The LMAC protocol copes best, because only one node
will try to send in each slot, ensuring the best possible link quality.

The LMAC protocol also shows the same sudden drop in delivery ratio as our
simulation results. Again this is due to the bandwidth limitations imposed by the
TDMA structure of the protocol. The T-MAC protocol shows erratic behaviour
for low message rates. This is probably due to the aggressive sleep strategy used
in the T-MAC protocol. As in the simulations, the T-MAC protocol shows it
does not deal well with high load situations.

The Crankshaft protocol and the BMAC protocol show similar performance.
For low message rates, the use of retries in the Crankshaft protocol means its
delivery ratio is higher than BMAC’s. For high message rates the difference
between Crankshaft and BMAC is too small to draw any conclusions.

7 Discussion

The simulations results show that the Crankshaft protocol can provide good
convergecast performance at low energy consumption in dense networks. Latency
can be a problem in the unoptimised protocol. However, by spending a little
more energy latency can be kept down if the routing layer is modified as well.
Furthermore, message rates of more than 0.5 messages per node per second are
infrequent in monitoring applications.

The trade-off is that broadcast bandwidth is significantly reduced. This means
that to use the Crankshaft protocol effectively, broadcast flooding must be min-
imised. Flooding is used mostly for two purposes in WSNs: collecting routing
information and pushing queries into the network. For the former purpose broad-
cast flooding is required to operate correctly. The latter can be achieved by
more bandwidth efficient broadcasting schemes, especially in dense networks.
This would eliminate the need for high broadcast throughput. Also, sustained
flood rates of more than one flood per second are probably excessive.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 G.P. Halkes and K.G. Langendoen

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

iv
er

y
ra

tio

Message rate [msg/node/sec]

Crankshaft
BMAC
LMAC

T-MAC

Fig. 5. Delivery ratio for convergecast with TinyOS implementation

A point to consider with respect to the implementation of the Crankshaft pro-
tocol is the recent trend towards packet-based radios. To implement Crankshaft
variable preamble lengths are required. Packet radios in general do not pro-
vide sufficient flexibility to implement this directly. However, the creators of the
WiseMAC protocol [9] already provide a solution: repeatedly sending the packet
for the required duration. Although this may seem wasteful, one has to consider
that sending is the infrequent operation. Letting the sender spend more energy
to allow multiple (overhearing) receivers to save energy is usually more energy
efficient on balance.

The Crankshaft protocol can also be tuned to the specific application and
network density. By increasing the number of unicast slots the consumed energy
can be brought down further, although maximum bandwidth will be decreased
and latency will go up. By decreasing the number of unicast slots, the maximum
per node bandwidth can be increased and the latency decreased, at the expense
of more energy consumption and more collisions. Similar considerations hold for
the number of broadcast slots.

7.1 Variations

The Crankshaft protocol design allows for some variations in the slot assignment
mechanism. For example, we have tested using meta frames consisting of four
frames. Each of the four frames would use a different assignment calculation, in
our case different parts of the MAC address.

As nodes are usually numbered sequentially, simply using the higher bits of
the MAC addresses would not give enough variation. Therefore the calculations
were more complex than simple modulo calculation. We also disallowed sending
in a node’s receive slot, because there always is at least one of the four frames
in which the slot assignment for two neighbours differs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Crankshaft: An Energy-Efficient MAC-Protocol for Dense WSNs 243

Although this assignment scheme resulted in a small performance increase,
we felt the difference did not compensate for the added code complexity and
processing requirements.

Other options we tested are Time Division Hashing [11], and using broadcast
slots for unicast if two neighbours share a slot assignment. None of these options
gave a significant performance benefit, so they are not included in the results.

8 Conclusions and Future Work

In this paper we have presented Crankshaft, a MAC protocol for dense wireless
sensor networks. It employs receive slot scheduling to reduce overhearing and
bases the schedule on MAC addresses to obviate the need to keep neighbour state.
We have shown through simulation and real-world experiments that Crankshaft
can provide good delivery ratios in convergecast scenarios with respect to Low
Power Listening, T-MAC, LMAC and SCP-MAC*. Simulations also show that
Crankshaft manages to do so while consuming very little energy.

Further simulations show that the Crankshaft protocol cannot provide good
broadcast flood delivery. However, Crankshaft’s energy consumption does not
suffer from broadcast flooding either. Most applications only require sporadic
flooding, for which Crankshaft provides adequate performance.

We conclude that the Crankshaft protocol is suitable for long-lived monitoring
applications, where energy efficiency is key. The Crankshaft protocol can pro-
vide the required delivery ratios for convergecast traffic at extremely low energy
consumption.

The Crankshaft protocol as proposed has a very rigid structure. This limits
the applicability of the protocol. For future work we intend to look at adaptive
scheduling of extra receive slots to facilitate more application types and mitigate
bottlenecks that can occur near sink nodes and elsewhere in the network. Another
research item is improving the broadcast capabilities of the Crankshaft protocol.

A final research direction for the Crankshaft protocol is leveraging multi-
channel radios. In principle this is as simple as assigning nodes a channel as well
as a time within a frame.

Acknowledgements

We would like to thank the anonymous reviewers for their comments. Further-
more we would like to thank Otto Visser and Ivaylo Haratcherev for their work
on the testbed and Tom Parker for his work on his TinyOS MAC-framework
which made developing the TinyOS implementation so much easier.

References

1. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless
sensor networks. In: Proc. of the 21st Conf. of the IEEE Computer and Commu-
nications Societies (INFOCOM). Volume 3. (2002) 1567–1576

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 G.P. Halkes and K.G. Langendoen

2. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for
wireless sensor networks. In: Proc. of the 1st ACM Conf. on Embedded Networked
Sensor Systems (SenSys 2003), Los Angeles, CA (2003) 171–180

3. Hill, J., Culler, D.: Mica: a wireless platform for deeply embedded networks. IEEE
Micro 22 (2002) 12–24

4. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless
sensor networks. In: Proc. of the 2nd ACM Conf. on Embedded Networked Sensor
Systems (SenSys 2004), Baltimore, MD (2004) 95–107

5. Ye, W., Heidemann, J.: Ultra-low duty cycle MAC with scheduled channel polling.
Technical Report ISI-TR-604, USC Information Sciences Institute (2005)

6. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for
wireless sensor networks. In: Proc. of the 1st Int. Workshop on Networked Sensing
Systems (INSS 2004), Tokyo, Japan (2004)

7. Zheng, T., Radhakrishnan, S., Sarangan, V.: PMAC: an adaptive energy-efficient
MAC protocol for wireless sensor networks. In: Proc. of the 19th IEEE Int. Parallel
and Distributed Processing Symp. (IPDPS’05). (2005) 65–72

8. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: Experiences from a
pilot sensor network deployment in precision agriculture. In: Proc. of the 14th Int.
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), Rhodes,
Greece (2006)

9. El-Hoiydi, A., Decotignie, J.D.: WiseMAC: An ultra low power MAC protocol for
the downlink of infrastructure wireless sensor networks. In: Proc. of the Ninth Int.
Symp. on Computers and Communications, 2004 (ISCC 2004). Volume 1. (2004)
244–251

10. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated, adap-
tive sleeping for wireless sensor networks. IEEE/ACM Trans. on Networking 12
(2004) 493–506

11. Cheng, W., Lee, I.T.A., Singh, N.: Time division hashing (TDH): A new scheduling
scheme for wireless ad-hoc networks. In: Proc. of the Int. Symp. on Advanced Radio
Technologies (ISART). (2005) 91–100

12. Li, Y., Ye, W., Heidemann, J.: Energy and latency control in low duty cycle MAC
protocols. In: Proc. of the IEEE Wireless Communications and Networking Conf.,
New Orleans, LA, USA (2005)

13. Jamieson, K., Balakrishnan, H., Tay, Y.C.: Sift: a MAC protocol for event-driven
wireless sensor networks. In: Proc. of the 3rd European Workshop on Wireless
Sensor Networks (EWSN). (2006) 260–275

14. Varga, A.: The OMNeT++ discrete event simulation system. In: Proc. of the
European Simulation Multiconference (ESM’2001), Prague, Czech Republic (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times
in Wireless Sensor Networks

Alessandro Giusti1, Amy L. Murphy2,3, and Gian Pietro Picco1,4

1 Politecnico di Milano, Italy
giusti@elet.polimi.it

2 University of Lugano, Switzerland
3 ITC-IRST, Povo, Italy
murphy@itc.it

4 University of Trento, Italy
picco@dit.unitn.it

Abstract. Duty-cycling in wireless sensor networks (WSNs) has both beneficial
effects on network lifetime and negative effects on application performance due
to the inability of a sensor to perform while it is sleeping. In a typical scenario,
the active periods of nodes are randomly initialized, leading to unpredictable and
often sub-optimal performance. In this paper, we propose a fully decentralized
wake-up scattering algorithm that uniformly spreads wake-up times of nearby
sensors. Interestingly, our approach is complementary and dual to existing ap-
proaches that aim at synchronizing (instead of scattering) times, and to those that
focus on spatial (instead of temporal) coverage. Wake-up scattering is beneficial
in several application scenarios, three of which are considered here: responsive-
ness to one-hop queries from a mobile base station, sensing coverage for event
detection, and latency in multi-hop communication. Our evaluation shows that,
w.r.t. a random assignment of wake-up times, wake-up scattering brings improve-
ments in all these measures, along with a positive impact on the network lifetime.

1 Introduction

One of the primary challenges for wireless sensor network (WSN) applications is en-
ergy management. A common solution that dramatically increases sensor lifetime is
duty-cycling, i.e., periodically switching on and off communication and/or sensing ca-
pabilities. The major factors that affect lifetime are the length of the period (the epoch
period) and the duration of the on-time (the awake interval). However, another variable
critically affects the performance of the network, namely when in each period each node
activates. We refer to this as the wake-up time of the sensor node. Typically, the wake-up
time is randomly established, relating only to when the sensor is initially activated.

We first encountered the potential negative performance impact of wake-up times
during our work on TinyLIME [1], a middleware that allows applications running on
mobile bases stations to access the data (e.g., temperature) of nearby (one-hop) sensors
through a tuple space interface. The system is designed to account for sensors that
duty-cycle their communication components, therefore each time a base station needs
to contact a sensor, it repeats its request until a sensor wakes up, receives the request,

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 245–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

giusti@elet.polimi.it
murphy@itc.it
picco@dit.unitn.it

246 A. Giusti, A.L. Murphy, and G.P. Picco

and replies. In the best case, one of the sensors is awake when the first request is sent
and responds immediately. However, in the worst case, all sensors in range have just
cycled off and will not reactivate communication until the next epoch. Therefore, the
base station repeatedly sends the request until the sensors wake up and one replies. In a
system with an epoch of minutes, such delays in response time can be significant.

Our solution is to introduce a calibration phase to deliberately select the time within
the epoch in which each sensor wakes up. To improve performance, the wake-up times
should be scattered evenly throughout the epoch, minimizing the time that a base station
must wait before a sensor becomes active. Scattering is performed such that response
to a base station at any location in the system is minimized, thus avoiding the need to
track and adjust to a possibly rapidly moving base station.

We achieve this goal with a fully decentralized algorithm that incrementally im-
proves the scattering of wake-up times among neighboring nodes. Essentially, each
node periodically determines the wake-up times closest to its own among its one-hop
neighbors, then moves its own wake-up time so as to minimally overlap with others.
Because decisions are made entirely locally and independently, a single run of this
algorithm may result in poor scattering. However, the system quickly stabilizes to a
scattered network in very few repetitions.

Interestingly, this wake-up scattering approach can be naturally applied in many
other situations. For example, in contrast to the aforementioned scenario which duty-
cycles communication, consider a system that duty-cycles sensing activities. Scattering
the wake-up time for sensing allows the area to be more effectively covered at all times,
as opposed to activating all sensors in a given area at the same time. More importantly,
the guarantee of a better scattering in time enables one to design a network with shorter
awake intervals, therefore achieving a longer overall network lifetime. Another use is in
a system that exploits a tree for communication from sensors to a fixed, centralized sink.
To speed up communication from the edge of the network to the base station, parent
nodes should be active after their children. In this case, proper scattering of wake-up
times can decrease the average latency for data traveling on the network towards the
root, thus increasing network performance.

Finally, it is worth noting how the problem of wake-up scattering is complemen-
tary and dual to other problems in WSNs. For instance, the idea of controlling wake-up
times to enable communication has been studied in the context of MAC protocols, but
with the goal of synchronizing, instead of scattering, the wake-up times. Similarly, the
problem of covering an area to detect an event has been studied only for what con-
cerns spatial coverage of an area and not, to our knowledge, in terms of coverage in
time.

Summarizing, in this paper we put forth the following main contributions:

– we introduce for the first time the notion of wake-up scattering;
– we present a fully decentralized algorithm solving this problem;
– we evaluate this algorithm in three application scenarios common in WSNs.

These contributions are presented in Section 2, 3, and 4, respectively. The paper con-
cludes by reporting related work in Section 5, followed by a brief summary.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 247

Fig. 1. Key definitions illustrated with three nodes. Time increases left to right. E is the epoch
period, A the awake interval, Wi the wake-up time for node i, and diff(Wi, Wj) the length of
time between the wake-up times of nodes i and j.

2 Model and Motivation

Before presenting the details of our protocol, we briefly formulate the wake-up scatter-
ing problem and outline three reference scenarios that benefit from our approach.

2.1 Model

For the purposes of this work, we assume a straightforward network model in which
non-mobile sensor nodes with circular communication and sensing radii are deployed
in an unobstructed field. We further assume that all nodes have the same communi-
cation range. While these assumptions significantly simplify our analysis, they can be
altered without affecting the algorithm’s fundamental validity. Finally, we assume that
the topology is not known and nodes are only aware of the neighboring nodes they can
directly communicate with.

The primary premise of our work is that sensors operate in a duty-cycling manner,
turning on and off certain capabilities at regular intervals. The length of the interval is
the epoch period E, while the time during which a node is on is the awake interval A.
Although it is possible to allow both E and A to vary for each node, in this work we
assume they are system-wide, deployment-time parameters, equal for all nodes. These
parameters are illustrated in Figure 1. Although this figure shows that the epochs at all
three nodes are synchronized, this is not a requirement for our approach.

The figure also represents the wake-up time Wi, for each node i, and the interval
between wake-up times measured with diff(Wi, Wj). This operator accounts for the
fact that the wake-up patterns repeat across epochs, therefore it measures the difference
in the start of the awake intervals between any two nodes, even those waking up at the
beginning or end of an epoch.

2.2 Wake-Up Scattering: Objectives and Usage Scenarios

This work illustrates an approach to modify, in a decentralized fashion, the wake-up
time Wi of the nodes in a WSN such that they are scattered as much as possible. We

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

248 A. Giusti, A.L. Murphy, and G.P. Picco

(a) Before scattering. (b) After scattering.

Fig. 2. Three connected nodes before and after scattering. di shows the maximum delay for a base
station to wait for a response in each setting.

maintain that such wake-up scattering improves application performance in many sit-
uations. Here, we focus on three representative scenarios with different characteristics,
for which we detail the application functionality and goal as well as the improvement
expected from wake-up scattering. In Section 4 we use these same scenarios to evaluate
the effectiveness of our approach.

Responsiveness to Local Queries. As mentioned in the introduction, our first scenario
is motivated by our work on the TinyLIME middleware [1]. In TinyLIME applications,
sensor nodes are distributed through a region and a mobile base station queries for
sensor data close to it. The goals in this environment are two-fold. First, we wish to
minimize the time that a base station needs to wait to receive data. In other words, the
goal is to always have at least one node near the base station awake, or about to wake
up, in order to respond to queries. Second, we wish to minimize the maximum number
of nodes that are awake at the same time, therefore reducing the possibility of collisions
among query responses issued simultaneously by awake nodes.

Rather than trying to adapt to the possibly rapidly moving base station, our approach
yields a wake-up scattering solution that suffices for any location of the base station. We
accomplish this by considering the wake-up times among nearby nodes, motivated by
the fact that such nodes are likely to be in contact with the base station at the same time,
while those farther away will not. In this case the problem can be defined as the search
for a global configuration of wake-up times that maximizes the minimum difference in
wake-up times for any pair of nearby nodes. Put another way, our goal is that any pair of
nearby motes should have their wake-up times as far away from each other as possible.

Figure 2 intuitively demonstrates the benefits of wake-up scattering with three nodes
in a fully connected network (i.e., each pair can communicate) both before and after
scattering. It can clearly be seen that after scattering, fewer nodes are awake at any given
time, therefore reducing the possibility of communication interference. The figure also
shows the maximum time, di that an unlucky base station needs to wait before receiving
a response to a query, with the maximum delay d1 much larger than d2. On average,
a base station initiating a query at any point during the epoch will have less delay to
receive a response after scattering.

Event Coverage. Another popular use for sensor networks is detection of an event
occurring somewhere in the field covered by the sensors. In this scenario, the critical
parameters are the sensing range of the devices and the amount of time that the sensors

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 249

are active. To detect an event, it must occur both spatially inside the sensing range of a
node and temporally during the awake time of the node.

Our goal in this scenario is to maximize the percentage of events detected. By treat-
ing sensing analogous to communication, we can reuse the previous wake-up scattering
technique to manage the wake-up times of sensing devices, thus guaranteeing that the
intervals of data acquisition are spread as evenly as possible throughout the epoch thus
improving event detection. Figure 2 can be used to visualize the concept, by defin-
ing the awake interval as the active time of the sensor devices. Although after scatter-
ing there are still gaps in the sensed time, these gaps are smaller than before scatter-
ing. To completely eliminate these breaks in sensing coverage, the awake interval of
the sensors should be modified dynamically. However, in this paper we do not con-
sider this additional optimization and limit ourselves to the management of wake-up
times.

Data Latency in Tree-Based Networks. The third scenario we consider is the con-
struction of a tree to funnel data from the edges of the network to a centralized base
station, a common approach for applications such as TinyDB [2]. When considering
nodes that duty-cycle their communication capabilities, we want to guarantee that when
a child has data to send, either its parent in the tree is immediately active or it will be
soon, thus minimizing the latency of a data packet on the path to the sink.

If we ignore propagation delays, the trivial solution is to force all nodes to turn on
their communication at the same time. Not only does this solution exhibit a high colli-
sion probability, if sensors are active only at the same time as communication, sensing
will also be synchronized and the potential benefits of scattering for event detection will
not be achieved. Therefore, our goal is to maintain good event coverage while simulta-
neously reducing data latency.

To achieve this, we require that all nodes keep track of which of their neighbors can
serve as parents towards the sink. We assume this is accomplished by broadcasting a
message from the sink, that allows nodes to know their distance from it, and to infer
that all neighbors with distances less than their own are potential parents.

When a node has a message to propagate to the sink (i.e., data collected from one of
its own sensors or a message from one of its children), it must forward this to one of its
(potential) parents, determined as above. We assume that the node tracks the wake-up
time of its parents, and thus knows which parent will be awake next. If one is currently
awake, the packet can be immediately sent; if not, the node must wait until a parent is
awake, then forward the message. If the parent’s wake-up time is much after the end of
the awake interval of the child, rather than stay awake waiting, energy-savings may be
achieved by putting the child to sleep and waking it up later when the parent is awake.

Intuitively, this gap between the readiness of the data at the child and the readiness
of the parent to receive the data is minimized if the parent node is the next node to wake
up in the sequence of wake-up times. If, instead, the next node is a sibling or child,
data cannot make quick progress. Therefore, our goal is to introduce into the scattering
algorithm the constraint that the next node should be a parent. Clearly this cannot be a
strict requirement, because a node that must serve as a parent for multiple children can
only have one previous to it in the wake-up order. However, we enforce the constraint
that every node has either a parent or a sibling next in the wake-up order.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 A. Giusti, A.L. Murphy, and G.P. Picco

3 A Decentralized Wake-Up Scattering Algorithm

With the previous application targets in mind, we now present the details of our wake-
up scattering approach. The algorithm is designed to generate low communication over-
head and is easily implementable in a real WSN system. Our presentation first addresses
the general scattering necessary for the first two application scenarios, then introduces
extensions for multi-hop tree-based communication.

3.1 Overview

To simplify the explanation of the algorithm, we assume that the epoch starting times
are synchronized at all nodes and that all start the scattering algorithm at the same time.
Section 3.4 outlines the minimal changes required to remove these constraints.

Our wake-up scattering algorithm is inherently distributed among the sensor nodes,
with each node making decisions with information only about nodes it can directly
communicate with. Wake-up scattering iteratively refines the wake-up times of nodes
in a series of calibration rounds. Each calibration round lasts one epoch, after which
each node selects its new wake-up time. Our experiments, presented in the next section,
demonstrate that after few rounds (on the order of 3-5) the network stabilizes to a well-
scattered configuration.

It is worth noting that calibration rounds need not occur in successive epochs, but
can be spread out over time, further limiting the already minimal impact of wake-up
scattering on the normal operation of the WSN. Furthermore, after calibration stabilizes,
it is meaningful to periodically repeat a calibration round to account for the insertion or
removal of sensors.

The processing on a node inside a calibration phase is as follows:

1. Each node must learn the wake-up times of some of its neighbors. In a synchronized
system, the nodes exchange their Wi values at the beginning of the calibration
epoch. Each node is only interested in the wake-up times of the neighbor that wakes
up immediately before it, prev, and immediately after it, next.

The computation of Wprev and Wnext must take into account the fact that the
scheduling of wake-up times is repeated across epochs. Therefore, if a mote is the
first to wake up in its neighborhood, Wprev = Wlast − E, i.e., the wake-up time
of the last node that wakes up in the epoch, minus the duration of the epoch E.
Similarly, if the node is the last to wake up in the epoch, Wnext = Wfirst + E.

2. Based on the collected information, each node selects a new wake-up time near
the center of the time interval between Wprev and Wnext. The motivations for
not moving to the precise center are discussed later. Also, the target is calculated
modulo E, forcing the wake-up time to fall inside the epoch.

Figure 3 shows a single calibration round for node 1 and the four nodes in commu-
nication with it. In this example, only nodes 1, 2, and 3 change their wake-up times, as
indicated by the shift from the light to dark wake-up intervals, while nodes 4 and 5 are
already well scattered w.r.t. all their neighbors and therefore do not adjust their wake-
up times. The figure shows the key control information for node 1, namely the wake-up
time of its prev (node 3) and next (node 2). Wtarget is the midpoint between these
values, although node 1 does not move exactly to this time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 251

Fig. 3. A scenario with five nodes in the same 1-hop neighborhood, scattering their wake-up
times. Light shading indicates the old awake interval, and dark shading the new one. Arrows
indicate the Wprev, Wnext, and the computed target wake-up time for node 1, Wtarget.

Indeed, the actual new wake-up time is calculated as a weighted average of Wtarget

and the current wake-up time W1. This weight, 0 < α ≤ 1, is a parameter to the al-
gorithm whose primary effect is to regulate the speed at which the algorithm stabilizes,
i.e., the number of required calibration rounds. Small values reduce the convergence
speed, while larger values generally converge faster. However, if the value is too large,
the evolution to new configuration is not stable. Moreover, if we consider unreliable
communication in which packets containing information about Wnext and Wprev are
lost, a smaller α value improves robustness.

Finally, it is worth noting that each calibration phase requires only a single, one-hop
broadcast message from each node. Therefore, a calibration epoch can overlap with an
epoch in which data is also exchanged.

3.2 Extensions for Tree-Based Communication

As noted in Section 2.2, a good wake-up configuration for multi-hop tree-based com-
munication is one in which every node has either a sibling or a parent as its next in
the wake-up sequence. Further, latency can be reduced by moving the wake-up time
of the child close to the wake-up time of the parent. In this section we introduce two
extensions to achieve these goals, namely jumping and waving.

“Jumping” Wake-up Times to Allow a Parent to Follow a Child. While ideally a par-
ent should wake up after a child to forward data upstream as quickly as possible, the
previously presented scattering algorithm never changes the sequence that nodes wake
up inside an epoch. In other words, if a parent wakes up before its child, our scattering
algorithm will never swap this order. Therefore, to reach a better configuration for tree-
based communication, we introduce a new behavior in the scattering algorithm, namely
the ability to jump over a neighbor w.r.t. wake-up time.

Specifically, if a node detects that its next node is one of its children, it sets its
new wake-up time in the middle of the wake-up times of Wnext and Wafternext,
where Wafternext is the node to wake up immediately following next. To avoid
unstable behaviors such as nodes continuously jumping back and forth, jumping is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 A. Giusti, A.L. Murphy, and G.P. Picco

applied only with a given probability β, a parameter of our algorithm. In experiments
with β = 0.6, shown in Section 4, all topologies converged quickly to “tree-friendly”
configurations. The time to convergence depends mainly on the depth of the tree. In
fact, a faster convergence could be achieved by using a high value of β for nodes close
to the sink, and decreasing it for nodes farther away. In this way, the nodes closer
to the root stabilize their configuration quickly, allowing incremental stabilization of
downstream nodes.

“Waving” Wake-up Times to Reduce Latency. While jumping generally retains both
short intervals between wake-up times and good event detection, the latency for a mes-
sage to move from the edge of the network to the sink is not fully optimized. In fact,
the optimal wake-up configuration is achieved when the time between a node and its
parent’s wake-up time is fixed to the message passing time. Enforcing such a wake-up
schedule is relatively trivial and results in a wake-up pattern in which nodes one hop
from the sink wake up together, those two hops away wake up immediately before, and
so on to the edge of the network. The result is a “wave” of wake-up times originating
with nodes at the edges and ending at the sink. Any scattering away from this wave
pattern negatively affects the optimal latency for a packet traveling to the sink.

To counteract this, we introduce controlled waving, i.e., setting wake-up times to re-
duce the interval between a node’s wake-up time and Wnext. However, our goal is not
simply to form a tree, but also to retain the benefits of wake-up scattering, namely a
short time to communication and a good event coverage. Such a compromise is reached
by enforcing a maximum wake-up distance between a sensor and its next. This dis-
tance, γ, is another parameter of our protocol allowing the application to tune the trade-
off between a good scattering and the latency to reach the sink.

3.3 Pseudocode

Figure 4 shows the full pseudocode for a single calibration round of our scattering
algorithm, including the extensions for managing a tree. For convenience, we use the
notation W j

i to indicate the wake-up time of node i in calibration round j. Initially,
j = 0 and the wake-up time for each node, W 0

i , is assumed to be random. The key
parameters already mentioned are α, affecting the convergence speed, β, establishing
the jumping probability, and γ determining the waving behavior. When β = 0, no
jumping optimization is performed. The γ parameter has meaning only if jumping is
on, i.e., β �= 0. γ = 0 represents perfect synchronization of wake-up times; meaning all
nodes wake up at the same time.

Notably, the first steps of the algorithm establish the values of Wnext and Wprev by
assuming that all nodes receive the full configuration R of wake-up times before the
round starts. Next we consider an alternate approach that does not require synchroniza-
tion among the nodes.

3.4 Removing Synchronization Requirements

In some cases, it may not be reasonable to assume that nodes share a clock and therefore
that epochs are synchronized among the nodes. This makes a direct comparison among
the wake-up times impossible, and demands an alternate mechanism to learn Wprev,
Wnext and, if necessary, Wafternext.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 253

// Exchange wake-up times with neighbors
Broadcast W j

i

Receive R = {W j
n : n is a neighbor of i}

if R is empty then exit // i is alone

// Initialization of Wnext and Wprev

Wfirst ⇐ min(R)
Wlast ⇐ max(R)
if W j

i > Wlast then Wnext ⇐ Wfirst + E // i is the last
else Wnext ⇐ min(W j

n ∈ R : W j
n > W j

i)
if W j

i < Wfirst then Wprev ⇐ Wlast − E // i is the first
else Wprev ⇐ max(W j

n ∈ R : W j
n < W j

i)

// Scattering for next round
target ⇐ (Wprev + Wnext)/2
W j+1

i ⇐ (W j
i · (1 − α) + target · α) mod E

// Extensions for the tree scenario
if i belongs to a tree and is not the root then
// Waving
if W j+1

i < Wnext − γ then W j+1
i ⇐ Wnext − γ

// Jumping
if next is a child then
with probability (1 − β) exit // abort jumping
if i is the last or second to last then

Wafternext ⇐ min(W j
n ∈ R : W j

n + E > Wnext) + E

else Wafternext ⇐ min(W j
n ∈ R : W j

n > Wnext)
W j+1

i ⇐ ((Wnext + Wafternext)/2) mod E // jump

Fig. 4. A single calibration round j of the wake-up scattering for node i

A simple solution is to gather these wake-up times relative to a nodes own epoch.
This can be achieved by requiring each node to broadcast a message upon waking up,
and having all nodes listen for two epochs. The latter constraint ensures that a node
receives the wake-up time of nodes that were already awake when its epoch started. The
algorithm in Figure 4 remains fundamentally unchanged after the wake-up times are
collected. One additional advantage of this mechanism is that it reduces the probability
of collisions among calibration messages, as they are sent at the wake-up times of the
nodes and are naturally scattered.

Another practical concern is the initiation of the calibration round. While we have
so far considered that all nodes are aware of the calibration at the same moment, it
is trivial to extend the algorithm to allow a node to start a calibration round when
it receives a calibration message from one of its neighbors. In this manner, knowl-
edge of calibration will propagate to the whole system regardless of the node where it
originates.

4 Evaluation

Our wake-up scattering algorithm potentially supports many applications. Our eval-
uation shows the achievable benefits for three, distinct scenarios as we vary the key
parameters. Table 1 shows the most important parameters along with the default values
used during simulation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 A. Giusti, A.L. Murphy, and G.P. Picco

Table 1. Key simulation parameters and their default values. Those in italics remain constant
throughout the evaluation.

Parameter Value
Number of Nodes 200

Size of area 1000 x 660
Epoch period 1

Parameter Value
Awake interval 0.25

Radio range 70
Sensing range 70

Parameter Value
α, scattering weight 0.5

β, jumping probability 0
γ, maximum waving distance –

The evaluation was performed with a custom Java simulator.1 As previously men-
tioned, the simulator assumes a straightforward communication model where nodes
have configurable, circular communication and sensing ranges. The results presented
here assume messages are never lost, although we also performed experiments (not
presented here for space reasons) showing that even with up to 10% loss, the system is
still able to quickly converge to a good wake-up configuration.

Most of the reported results are calculated as averages over 10 different random
topologies, each with 5 different initial wake-up configurations. Our baseline for com-
parison are the initial, random configurations.

Responsiveness to Local Queries. In our scenario with a mobile base station and many
scattered sensors, the primary goal to minimize the time that the base station waits for
a query response. This corresponds to the average response delay between when a base
station first requests data, until a sensor in range is awake and sends the data. To measure
this quantitatively, we use a Monte-Carlo sampling technique that randomly selects and
point (x, y) and time t such that (x, y) is within communication range of at least one
sensor and t is inside the epoch. The response delay is 0 if at least one sensor in radio
range is awake at t, otherwise it is calculated as the difference between t and the closest
wake-up time of an in-range sensor. Thousands of samples are taken and averaged to
compute the overall average response delay.

One of the major factors affecting radio responsiveness is the duration of the awake
interval for each of the nodes. The longer the nodes are active, the greater the chance
that a node will be available to respond immediately. In our default setting with 200
nodes and radio range of 70, a node has on average 4.2 neighbors. Therefore, with a
wake-up time near to 1/4 of the epoch, we expect very short response delays, as it is
likely that at least one node is awake when a query is made. However, as the awake
interval shrinks, the probability of finding a gap between the query and the first wake-
up time increases. Figure 5 shows the average response delay in both absolute (left) and
relative (right) terms. The absolute response delay is in terms of the fraction of an epoch
while the relative is in percentage improvement over the initial wake-up configuration.
From the left side of the figure, it is important to notice that in all cases, our scattering
approach converges in few configuration rounds, with most improvements taking place
in the first three rounds.

Figure 5 also evidences that our wake-up scattering approach can be used to dramat-
ically improve the lifetime of the network. Consider that a randomly initialized network

1 An online demo is available to test and visualize the effect of wake-up scattering on custom
configurations: http://www.elet.polimi.it/upload/giusti/scattering/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.elet.polimi.it/upload/giusti/scattering/

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 255

Fig. 5. Response delay with various awake intervals

Fig. 6. Response delay with various communication ranges. The three lines correspond to net-
works with on average 4.3, 8.4 and 10.1 neighbors.

with an awake interval of 0.15 has an initial average response delay of 0.110, labeled
a in the figure. A similar response delay of 0.106, b in the figure, can be achieved after
wake-up scattering with a shorter awake interval of 0.10. This means that by applying
wake-up scattering, the awake interval can be decreased by 33% while the application
performance is preserved at what can, on average, be achieved with a random initial
configuration. Similar significant results can be observed by comparing the initial re-
sponse delay with a given awake interval compared to similar response delays achieved
after scattering, but with shorter awake intervals.

We also analyzed our approach for different network densities, observing from Fig-
ure 6 that with less dense networks, the percentage improvement after scattering tends
to be larger. Also, a similar lifetime argument can be made by observing that with a
radio range of 100, after scattering, b in the figure, the response delay achieved is that
of randomly initialized network with a range of 110, a in the figure. Because higher
transmission ranges require more energy, again, wake-up scattering can be exploited to
improve network lifetime.

Event Coverage. When applying wake-up scattering to sensor activation, as opposed
to communication activation, we consider the probability that an event occurring in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 A. Giusti, A.L. Murphy, and G.P. Picco

Fig. 7. Sensing coverage for various awake intervals

sensed region is detected. To measure this, we use a sampling technique similar to that
used for response delay, selecting a point (x, y) that is covered by at least one sensor,
and a time in the epoch t. If a sensor covering this point is active at time t, then the
event is detected, otherwise it is not. As before, several thousand samples are taken
and the results averaged. It should be noted that perfect event detection is unlikely
to be attained, except with contrived topologies. Consider a simple setting with two
sensors, each awake half of the epoch, and located just within communication range.
Even with perfect scattering, only the events located in the overlapping area will be
reliably detected. Instead, those in regions covered only by one sensor will be detected
half the time, leading to an average event coverage much less than 1.

In contrast to the scattering for response delay discussed previously, event coverage
scenarios are heavily dependent on the length of the awake intervals. With response de-
lay, if a node is inactive when a query is made, the base station simply waits. Instead, if
an event occurs and no sensor is active, the event is not detected. Therefore, in Figure 7
we show the effect of awake intervals on the sensing coverage. Although the percentage
improvement in the probability of detecting an event is small, less than 15%, we can
make similar network lifetime arguments as before by comparing the achieved coverage
of a network with an awake interval of 0.20 (0.671, b in the figure) in comparison to
the initial coverage of a network with 20% more awake time (0.667, a in the figure). In
other words, the lifetime of the network can be increased by 20% while achieving the
same coverage as a random initialization with a longer awake interval.

Another important consideration is the relationship between the communication ra-
dius and the sensing range. Our wake-up scattering is based only on the ability of two
nodes to communicate with one another, ignoring any difference between sensing and
communication ranges, however such differences are possible with real sensing devices.
Figure 8 shows that if the communication radius remains fixed while the sensing range
varies, wake-up scattering still achieves gains.

Data Latency in Tree-Based Networks. When considering a tree, the primary factor to
improve is the time it takes a message to reach the collection point, the root. Therefore,
we consider the time-to-root averaged over all sensors, assuming the message is sent just

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 257

Fig. 8. Effect of sensing range on wake-up scattering

before the end of the sender’s awake interval. If the parent is not immediately awake,
the sending node wakes up outside of its normal awake interval to forward the message.

The top of Figure 9 gives a first impression of the effect of wake-up scattering on
time-to-root, and the tradeoffs introduced with jumping and waving. The chart shows
how time-to-root changes from the initial random configuration (labeled init), after the
basic wake-up scattering stabilizes (scattering), after the application and stabilization
of jumping (jumping), and after applying waving with various γ parameters. It should
be noted that this plot represents the independent effects of the scattering, jumping, and
waving techniques, not a progression of time-to-root values over time.

The first observation is that time-to-root is only marginally worse after scattering.
This is because, except with long awake times, scattering removes any overlap of awake
intervals between parents and children that occurred in the random initialization. Sec-
ond, the addition of jumping significantly improves time-to-root, reducing the latency
by approximately one third of the total time. Finally, as expected, waving further re-
duces time-to-root with smaller values of the waving factor, γ, leading to greater im-
provements because of the reduction of the required gap between the wake-up times of
the child and parent.

While the previous plot shows that both jumping and waving have significant, pos-
itive impacts on time-to-root, it is reasonable to consider combining the tree scenario
with event coverage, for example to send notifications of detected events to a central-
ized sink. Therefore, the bottom of Figure 9 shows the effect of jumping and waving
on the coverage achieved with scattering alone. Most importantly this plot shows that
jumping does not significantly affect sensing coverage, however waving does. This is to
be expected because jumping maintains the scattering properties while simply chang-
ing the order of awake intervals, instead waving causes the wake-up intervals to overlap.
Such overlapping intervals lead to an increase in missed events because the nodes tend
to be active for event detection at the same times when γ is small. Put another way,
when a sensor node is used for event detection where the results are sent to a central-
ized root, wake-up scattering and jumping provide a solution that has good coverage
and time-to-root values. To our knowledge, our work is the first to consider such a
combination.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

258 A. Giusti, A.L. Murphy, and G.P. Picco

Fig. 9. Average time-to-root and sensing coverage for various awake intervals after enabling the
various scattering, jumping, and waving phases of the algorithm. The results are averaged over
50 random topologies, each tested with a single initialization of wake-up times.

We ran similar experiments to evaluate the effects of jumping and waving on re-
sponse delays in the first scenario. The results are similar to those for coverage, showing
that jumping has minimal effect, while waving has negative effects.

5 Related Work

To the best of our knowledge, our approach to scatter the wake-up times of nearby
sensors is novel. Nevertheless, it is related to several other directions in the literature,
investigated here from the bottom (MAC) up (applications).

Many MAC layer protocols explicitly introduce their own duty cycling as a means to
save energy, thus on the surface the two approaches are similar. However, it is important
to note that the duration of duty cycles at the MAC-layer and those we consider are
orders of magnitude different.

As our approach focuses on assigning wake-up times to nodes, it is interesting to
compare the wake-up scattering assignments to those of MAC protocols. For example,
SMAC [3] and TMAC [4] attempt to synchronize all nodes to a single awake inter-
val, allowing communication during a short interval, then putting the whole network to
sleep for an extended time. While this has the same lifetime extension potential as our
approach, it cannot achieve the benefits for average response delay or sensor coverage.
In contrast to the whole-network synchronization of SMAC and TMAC, LMAC [5] and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Decentralized Scattering of Wake-Up Times in Wireless Sensor Networks 259

ZMAC [6] are TDMA-like approaches that divide and assign a set of communication
slots among all nodes, eliminating overlap as much as possible. While this is related to
wake-up scattering as the assigned slots are spread over time, these systems work with
an assumption of a fixed number of time slots, eliminating all possible overlapping.
Wake-up scattering, on the other hand, scatters as much as possible without discrete,
fixed time intervals, allowing overlap if the awake interval is long, but still spreading
out over the full epoch even if awake intervals are short.

Finally, DMAC [7] is designed to allow efficient communication along a tree, termed
convergecast communication. It performs synchronization similar to SMAC/TMAC,
then staggers the wake-up such that messages are forwarded without delay. This spread-
ing of wake-up intervals is analogous to our waving approach that moves wake-up in-
tervals closer together, similarly reducing latency. However, as observed in Section 4,
placing wake-up times close together negatively affects all benefits to coverage that can
be achieved with scattering.

Above the MAC layer, extensive work exists on managing sensor coverage by in-
tentionally setting the physical sensor locations, as opposed to our approach which
deals with temporal coverage. In fact, this field has been studied since the early 1990’s
in the context of the cellular network. More recent work approaches the same issues
in WSNs [8] with a variety of techniques such as Integer Programming [9], greedy
heuristics [10,11,12] and Virtual Force Methods [13]. Interestingly, [14] studies sensor
placement in combination with varying the ratio of sensing and communication range,
supporting our desire to present the evaluation of the same ratio when studying sensing
coverage. These spatial techniques can be applied in parallel to our approach, however,
it is worth noting that our study measured only the coverage that could be achieved with
random placement, ignoring any areas of the field not covered by the sensors.

6 Conclusions

In this paper we presented and evaluated a fully decentralized wake-up scattering algo-
rithm whose goal is to spread uniformly the wake-up times of the nodes in a WSN. We
illustrated common application scenarios where this functionality is beneficial, and ver-
ified through simulation that indeed our algorithm provides improvements in the WSN
performance and lifetime over a random assignment of wake-up times. The algorithm
is very simple, and therefore not only is easily implementable on resource-scarce WSN
devices, but it also introduces a negligible communication and computational overhead.

Acknowledgments. This work is partially supported by the European Union under the
IST-004536 RUNES project and by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant number 5005-67322.

References

1. Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., Picco, G.P.: Mobile data
collection in sensor networks: The TinyLIME Middleware. Elsevier Pervasive and Mobile
Computing Journal 4(1) (2005) 446–469

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

260 A. Giusti, A.L. Murphy, and G.P. Picco

2. Madden, S., M.J. Franklin, J.M. Hellerstein, Hong, W.: TinyDB: An acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30(1) (2005) 122–173

3. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor
networks. In: Proceedings of the 21st IEEE INFOCOM. (2002) 1567–1576

4. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sen-
sor networks. In: Proc. of the 1st ACM Conf. on Embedded Networked Sensor Systems
(SenSys), Los Angeles, CA, USA (2003) 171–180

5. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for wireless
sensor networks. In: Proc. of 1st Int. Wkshp. on Networked Sensing Systems, Tokyo, Japan
(2004)

6. Rhee, I., Warrier, A., Aia, M., Min, J.: Z-MAC: A hybrid MAC for wireless sensor networks.
In: Proc. of the 3rd ACM Conf. on Embedded Networked Sensor Systems (SenSys), San
Diego, CA, USA (2005) 90–101

7. Lu, G., Krishnamachari, B., Raghavendra, C.S.: An adaptive energy-efficient and low-latency
MAC for data gathering in sensor networks. In: Proc. of the Int. Wkshp. on Algorithms for
Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe, NM, USA (2004)

8. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage problems in
wireless ad-hoc sensor networks. In: Proc. of 20th IEEE INFOCOM, Anchorage, Alaska,
USA (2001) 1380–1387

9. Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid coverage for surveillance and target
location in distributed sensor networks. IEEE Trans. on Computers 51(12) (2002) 1448–
1453

10. Bulusu, N., Estrin, D., Heidemann, J.: Adaptive beacon placement. In: Proc. of the 21st Int.
Conf. on Distributed Computing Systems (ICDCS), Phoenix, AZ, USA (2001) 489–498

11. Howard, A., Mataric, M.J., Sukhatme, G.S.: An incremental self-deployment algorithm for
mobile sensor networks. Auton. Robots 13(2) (2002) 113–126

12. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using po-
tential fields: A distributed, scalable solution to the area coverage problem. In: Proc. of the
7th Int. Symp. on Distributed Autonomous Robotic Systems (DARS). (2002)

13. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization in distributed sensor
networks. Trans. on Embedded Computing Sys. 3(1) (2004) 61–91

14. Jourdan, D.B., de Weck, O.L.: Layout optimization for a wireless sensor network using a
multi-objective genetic algorithm. In: Proc. of the Vehicular Technology Conf., Los Angeles,
CA, USA (2004) 2466–2470

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the
MANTIS Kernel

Cormac Duffy1, Utz Roedig2, John Herbert1, and Cormac J. Sreenan1

1 Computer Science Dept., University College Cork, Cork
2 InfoLab21, Lancaster University, Lancaster

Abstract. Event-driven operating systems such as TinyOS are the pre-
ferred choice for wireless sensor networks. Alternative designs following
a classical multi-threaded approach are also available. A popular im-
plementation of such a multi-threaded sensor network operating system
is MANTIS. The event-based TinyOS is more energy efficient than the
multi-threaded MANTIS system. However, MANTIS is more capable
than TinyOS of supporting time critical tasks as task preemption is sup-
ported. Thus, timeliness can be traded for energy efficiency by choosing
the appropriate operating system. In this paper we present a MANTIS
kernel modification that enables MANTIS to be as power-efficient as
TinyOS. Results from an experimental analysis demonstrate that the
modified MANTIS can be used to fit both sensor network design goals of
energy efficiency and timeliness.

1 Introduction

Sensor nodes must be designed to be energy efficient in order to allow long peri-
ods of unattended network operation. However, energy efficiency is not the only
design goal in a sensor network. For example, timely processing and reporting
of sensing information is often required as well. This might be needed to guar-
antee a maximum delivery time of sensing information from a sensor, through
a multi-hop network, to a base-station. To be able to give such assurances, net-
work components with a deterministic behavior will be required. The operating
system running on sensor nodes is one such component.

Event-based operating systems are considered to be the best choice for build-
ing energy efficient sensor networks as they require little memory and processing
resources. Hence, the event-based TinyOS [1] is currently the preferred operating
system for sensor networks. Event-based operating systems are not very useful
in situations where tasks have strict processing deadlines. Tasks are processed
sequentially, a prioritization of important tasks to meet processing deadlines
is not possible. Multi-threaded operating systems are more suitable if such re-
quirements must be fulfilled. Thread preemption and context switching enables
such systems to prioritize tasks and meet deadlines. The MANTIS [2] operating
system is the first multi-threaded operating system designed specifically for wire-
less sensor networks. Unfortunately, MANTIS has a relatively high processing

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 261–276, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

262 C. Duffy et al.

overhead for thread management. This processing overhead is directly related to
reduced energy efficiency because of the relative increase in CPU activity.

This creates the dilemma that both design goals - energy efficiency and time-
liness - can only currently be optimized independently. One is forced to choose
which goal is of higher importance in the considered application scenario. There-
fore, it would be good if the dilemma could be resolved by either making TinyOS
more responsive or MANTIS more energy efficient. In this paper the later prob-
lem is solved: We present a MANTIS kernel modification to increase power ef-
ficiency. As the results show, MANTIS can be modified to be as power-efficient
as TinyOS without impacting vital kernel functionality. Thus, the modified
MANTIS can be used to solve both important sensor network design goals.

The next Section of the paper presents related work. Section 3 presets pre-
liminary research comparing TinyOS and MANTIS regarding event processing
capabilities and energy consumption. This comparison motivates the modifica-
tions of the MANTIS kernel for better energy efficiency. Section 4 explains in
detail the MANTIS kernel. Section 5 presents and explains the MANTIS kernel
modifications. Section 6 shows an evaluation of the modified kernel. Section 7
concludes the paper.

2 Related Work

Problems arise when a sensor network applications require to be energy efficient
and have to provide timely processing capabilities at the same time.

One example of an operating system that tries to bridge the gap is Contiki
[3]. Contiki is an event-based sensor network operating system that includes a
threaded library that can be optionally compiled to facilitate multi-threaded
applications. Thus multi-threaded capabilities can be selectively designated to
specific processes, without the processing and memory overhead in all parts of
the system.

A similar approach can be seen in [4,5]. In both works the TinyOS operating
system is encapsulated in a multi-threaded kernel. The operating system is then
scheduled as a thread such that it can be preempted by complex threads if
required. Thus TinyOS still achieves preemption without sacrificing the light-
weight scheduling characteristics. In summary, the research focus of [3,4,5] is to
minimize the processing overhead of a multi-threaded system, by isolating only
the processes that require multi-threaded capabilities. However no effort is made
to reduce the overhead of the multi-threaded processes.

In [6] a programming concept called “proto-threads” is described which al-
lows the programmer to develop a program using a multi-threaded programming
syntax. It is argued that an event-based system is more power-efficient but that
programming concurrent (sensor network) applications with threads, as opposed
to event handlers, is easier for the programmer. Proto-threads are, however,
merely a thread abstraction. They do not provide thread preemption, thus com-
plex processes cannot easily be multiplexed with high priority tasks without
introducing blocking.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 263

The research listed above tries to compromise between power-efficient event-
based schedulers and multi-threaded schedulers. The work presented in this pa-
per focus on the reduction of processing overheads in multi threaded sensor
network operating systems.

3 Preliminary Research

The preliminary research investigates the differences of the multi-threaded MAN-
TIS [2] and the event-based TinyOS [1] operating systems. More details on the
preliminary research can be found in [7]. The experimental methodology is re-
used for the evaluation of the optimized MANTIS presented in Section 6.

3.1 Evaluation Goals

It is generally assumed that an event-driven operating system is very suitable for
sensor networks because few resources are needed, resulting in an energy-efficient
system. However, the exact figures are unknown and therefore quantified in this
preliminary research. On the other hand it is claimed that a multi-threaded
operating system has good event processing capabilities in terms of meeting
processing deadlines. Again, an in-depth analysis is currently missing and is
therefore conducted. For comparison purposes, the event-based system TinyOS
and the multi-threaded system MANTIS executing the same sensor network
applications on the [8] are investigated.

The following parameters - while the sensor node is executing a generic ap-
plication - are evaluated:

1. Event Processing: The average task execution time Et of a particular re-
occurring sensor task is measured. Average task execution time and its vari-
ance are a measure for the event handling capabilities of the system.

2. Energy Consumption: The percentage of experiment time It spent with an
idle CPU is measured. CPU idle time can be used to suspend the CPU and
thus relates directly to the energy efficiency of a system.

An application scenario for the evaluation has to be defined, as the parameters
of interest are influenced significantly by the scenario. It was decided to use
a scenario of a generic nature so that the results are applicable to a range of
real-world applications.

3.2 Evaluation Setup

In many cases, a sensor network is used to collect periodically obtained mea-
surement data at a central point (sink or base-station) for further analysis. The
sensor nodes in such a network execute two major tasks. Sensor nodes perform
the sensing task and they are used to forward the gathered data to the sink. If
the sink is not in direct radio range of a node, other nodes closer to the sink
are used to forward data. The execution time of the sensing task will depend
on the nature of the physical phenomenon monitored and the complexity of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 C. Duffy et al.

algorithm used to analyze it. Therefore, the position of the node in such a net-
work and the complexity of the sensing task define the operating system load of
the sensor node. The complexity of the sensing task is varied in the experiments
and hence the application scenario is considered abstract, as it can be compared
with many different real-world deployment scenarios.

The complexity of the sensing operation depends on the phenomenon moni-
tored, the sensor device used and the data pre-processing required. As a result,
the operating system can be stressed very differently. If, for example, an AT-
MEGA128 CPU with a processing speed of 4Mhz is considered (a currently
popular choice for sensor nodes), a simple temperature sensing task processed
through the Analogue to Digital Converter can be performed in less than 1ms
[9]. In this case only a 16bit value has to be transferred from the sensing device
to the CPU. If the same device is used in conjunction with a camera, image
processing might take some time before a decision is made. Depending on cam-
era resolution and image processing performed, a sensing task can easily take
more than 100ms [10]. Other application examples documented in the litera-
ture are situated in between these values. Note that a long sensing task can be
split-up into several sub-tasks but in practice this is not always possible. The
experimental evaluation spans the task sizes described (1ms...100ms).

The following paragraphs give an exact specification of the abstract applica-
tion scenario used, which is defined by its topology, traffic pattern and sensing
pattern. The application scenario is then implemented using TinyOS and MAN-
TIS on the DSYS25[8] sensor platform for evaluation.

Topology. The sensor network is used to forward sensor data towards a single
base-station in the network. It is assumed that a binary tree topology is formed
in the network (see Fig. 1). Depending on the position n in the tree, a sensor
node might process varying amounts of packets. Nodes closer to the root are more
involved in packet forwarding as these nodes have to multiplex packet forwarding
operations with their sensing operations. In the experiments, the behaviour of
a single node at all possible positions n is emulated and measured by applying
the sensing pattern and network traffic as described next.

n=3

n=1

n=2

Fig. 1. Binary Tree

Sensing Pattern. A homogeneous activity in the sensor field is assumed for the
abstract application scenario. Each sensor gathers data with a fixed frequency
fs. Thus, every ts = 1/fs a sensing task of the duration ls has to be processed.
As mentioned, the duration ls is variable between ls = 4000 and ls = 400000
clock cycles depending on the type of sensing task under consideration (Which
corresponds to 1ms/100ms on a 4MHz CPU).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 265

Traffic Pattern. Depending on the position n of a node in the tree, varying
amounts of forwarding tasks have to be performed. It is assumed that no time
synchronization among the sensors in the network exists. Thus, even if each sen-
sor produces data with a fixed frequency, data forwarding tasks are not created
at fixed points in time. The arrival rate λn of packets at a node at tree-level n
is modeled as a Poisson process. As the packet forwarding activity is related to
the sensing activity in the field, λn is given by:

λn = (2n − 1) · fs (1)

This equation is a simplification; queuing effects and losses are neglected,
but nevertheless provides a good method to scale the processing performance
requirements of a sensor network application. It is assumed that the duration
(complexity) lp of the packet-processing task, is lp = 4000 clock cycles. This is
the effort necessary to read a packet from the transceiver, perform routing and
re-send the packet over the transceiver. This is a common processing time and
was obtained analyzing the DSYS25 sensor nodes using the Nordic radio [11].

3.3 Event Processing
It is assumed that the packet-processing task within the nodes has priority so
that deadlines regarding packet forwarding can be met. Thus, in the MANTIS
implementation, the packet-processing task has a higher priority than the sensing
task. In the TinyOS implementation, no prioritization is implemented as this
feature is not provided by the operating system.

Task Execution Time. To characterize processing performance of the operat-
ing system, the average task execution time Et of the packet forwarding task, is
measured. During the experiment, J packet-processing times ej are recorded. To
do so, the task start time estart and the task completion time estop are measured
and the packet-processing time is recorded as e = estop −estart. The average task
execution time Et is calculated at the end of the experiment as: Et =

∑
ej/J .

For each tree position n, the experiment is run until J = 25000 packet-processing
events are recorded.

Results. In the experiment, the average task execution time Et is determined for
TinyOS and MANTIS supporting the abstract application scenario (see Fig. 2).

Where MANTIS is used, it can be observed that the average packet-processing
time is independent of the sensing task execution time. Furthermore, Et is also
independent from the position n of the node in the tree. The average processing
time increases slightly, under a heavy load. This is due to the fact that under
heavy load packet forwarding tasks have to be queued (see Fig. 2 a)).

Where TinyOS is used, the average processing time for the packet forwarding
task Et depends on the length of the sensing ls of the sensing task. In addi-
tion, under heavy load the queuing effects of the packet forwarding tasks also
contribute somewhat to the average processing time (see Fig. 2 b)).

The variance in the packet-processing time Et is also recorded but is not
shown due to space restrictions. However, it has to be noted that this variance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 C. Duffy et al.

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
E

t (
m

s)

Tree Position [n]

MANTIS Et, ls=1 ms
MANTIS Et, ls=5 ms

MANTIS Et, ls=10 ms
MANTIS Et, ls=25 ms
MANTIS Et, ls=50 ms
MANTIS Et, ls=75 ms

MANTIS Et, ls=100 ms

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
E

t (
m

s)

Tree Position [n]

TinyOS Et, ls=1 ms
TinyOS Et, ls=5 ms

TinyOS Et, ls=10 ms
TinyOS Et, ls=25 ms
TinyOS Et, ls=50 ms
TinyOS Et, ls=75 ms

TinyOS Et, ls=100 ms

� � � � � 	 � � � 	 � � � �

Fig. 2. Average packet-processing time Et

is significantly smaller in MANTIS than in TinyOS (see [7] for details). Thus,
MANTIS is better able to support scenarios which require predictable processing
behaviour.

The thread prioritization capability of MANTIS is clearly visible in the ex-
perimental results. Packet processing times are independent of the concurrently
executed and lower priority sensing task. In TinyOS, sensing and packet for-
warding task delays are coupled, and the influence of the sensing activity on the
packet forwarding activity is clearly visible.

3.4 Energy Consumption

To evaluate power-efficiency, This study investigates the available idle time in
which low-power operations can be scheduled. Thus the comparative effectiveness
of specific power management policies can be guaged on the amount of potential
low-power (idle) time available.

Idle time. In the experiment, the abstract application scenario is executed by
the sensor node running TinyOS or MANTIS. The duration of the experiment
T and the duration ik of K idle time periods during the experiment is recorded.
i is defined as i = istop − istart . All idle periods ik are summarized and the
percentage idle time, It, the percent of experiment time, in which the processor
is idle, which is calculated as follows: It = (

∑
ik/T) · 100. Again, for each tree

position n, the experiment is run until J = 25000 packet-processing events are
recorded.

Results. In the first experiment, the percentage idle time It is determined for
TinyOS and MANTIS supporting the abstract application scenario. (see Fig. 3).

The time spent in idle mode drops for both operating systems exponentially
with the increasing node position in the tree described by the parameter n. This
behavior is expected as the number of packet tasks increases accordingly. Less
obvious is the fact that the available idle time drops faster in MANTIS than
in TinyOS. The fast drop in idle time is caused by the context switches in the
MANTIS operating system. The more packet forwarding tasks are created, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 267

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

Id
le

 T
im

e
I t

(%
 o

f T
)

Tree Position [n]

Kmodified ls=1ms
Kmodified ls=5ms

Kmodified ls=10ms
Kmodified ls=25ms
Kmodified ls=50ms
Kmodified ls=75ms

Kmodified ls=100ms
 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

Id
le

 T
im

e
I t

(%
 o

f T
)

Tree Position [n]

TinyOS Ik, ls=1 ms
TinyOS Ik, ls=5 ms

TinyOS Ik, ls=10 ms
TinyOS Ik, ls=25 ms
TinyOS Ik, ls=50 ms
TinyOS Ik, ls=75 ms

TinyOS Ik, ls=100 ms

� � � � � 	 � � � 	 � � � �

Fig. 3. Percentage idle time It for both operating systems

more likely it is that a sensing task is currently running when a packet interrupt
occurs. Subsequently, a context switch to the higher prioritized forwarding task
is needed.

3.5 Findings

The experimental results show that MANTIS has a much more predictive be-
havior executing the packet-processing task than TinyOS. More precise, the
execution time in MANTIS has a low variation and is independent of other ac-
tivity such as the sensing task. Thus, MANTIS would be preferable in situations
that need deterministic and timely processing. However, the MANTIS system is
not as power-efficient as TinyOS. Thus, TinyOS would seem preferable if energy
consumption is deemed to be of primary importance. If the system is not loaded
(leaf node with n = 1 and a sensing task with the size of ls = 1ms) a difference
of only 0.1% in idle time is measured. However, if the system is under a heavy
load (leaf node with n = 8 and a sensing task with the size of ls = 100ms) a 6.9%
difference in the idle time is encountered. The biggest difference is measured for
n = 8 with a task size of ls = 1ms which results in a difference of 7.6%.

4 The MANTIS Kernel Architecture

The threaded MANTIS architecture implements thread-preemption, allowing the
operating system to interrupt any active thread to immediately begin processing
a thread of higher priority. As a result, the operating system can respond faster to
critical events. In general, the system architecture follows the design principles of
classical multi-threaded operating systems. However, to facilitate the necessary
power management requirements, energy saving mechanisms are integrated in
the thread scheduling. The processing states (e.g. sleeping, waiting) of all threads
are monitored and used to decide which power saving modes of the CPU should
be activated. Power saving is activated through a so-called idle task which is
special purpose thread with the lowest possible thread priority, that is scheduled
when all other threads are inactive.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 C. Duffy et al.

Algorithm 1. Thread structure

1: mos_thread_new(thread_A,128, PRIORITY_HIGH)

2: thread_A
3: while(running)
4: ...
5: mos_semaphore_wait(A1)
6:

7: int_A
8: ...
9: mos_semaphore_post(A1)
10: ...

1:dispatch_thread()
2: PUSH_THREAD_STACK()
3: CURRENT_THREAD = readyQ.getThread()
4: CURRENT_THREAD.state=RUNNING
5: POP_THREAD_STACK()

part A part B

4.1 Overview

Each task the operating system must support can be implemented as a
separate MANTIS thread. A simplified view of this thread structure is shown
in Alg. 1, part A. A new thread is initialized via the function mos_thread_new
(line 1). Subsequently the thread processing, often implemented as an
infinite loop, is started (line 3). Processing might be halted using the
function mos_semaphore_wait when a thread has to wait for a resource to
become available (line 5). An interrupt handler (line 7) using the function
mos_semaphore_post (line 9) is used to signal the waiting thread that the
resource is now available and thread processing is resumed. While a thread is
waiting on a resource to become available, other threads might be activated or
if no other processing is required, a power saving mode is entered.

As an example, a thread might be used to process incoming packets from a
transceiver chip. In this case, the mos_semaphore_wait is used to suspend the
thread until a new packet arrives at the transceiver. If the transceiver receives a
packet, an interrupt is executed and the thread is resumed to read the currently
available packet and process it.

4.2 Scheduling

Thread scheduling is performed within the kernel function dispatch_thread
shown in Alg. 1, part B. This function searches a data structure called readyQ
for the highest prioritized thread and activates it. The readyQ is an array of
linked lists containing pointers to the currently active threads. Each index of
the array corresponds to a thread priority level.

When the dispatch_thread function is called, the current active thread is
suspended calling PUSH_THREAD_STACK (line 2). Thus, the current CPU
register information is saved to the heap memory allocated to the current thread.
The highest priority thread is then selected from the readyQ (line 3) and its
register values are restored by the POP_THREAD_STACK function (line 5).
The thread can then resume processing at the exact point it was previously
suspended.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 269

Algorithm 2. Semaphore
1: mos_semaphore_wait(Semaphore s)
2: s.val--
3: if (s.val<0)
4: s.addThread(CURRENT_THREAD)
5: CURRENT_THREAD.state=BLOCKED
6: update_sleep_counters()
7: dispatch_thread()

1: mos_semaphore_post(Semaphore s)
2: s.val++

3: if (s.getThread()!=NULL)
4: s.getThread().state=RUNNING
5: readyQ.addThread(s.getThread())
6: update_sleep_counters()
7: dispatch_thread()

part A part B

Algorithm 3. Timer Interrupt
1: t_slice_int()
2: readyQ.addThread(CURRENT_THREAD)
3: update_sleep_counters()
4: dispatch_thread()

Before the dispatch_thread function is called, the readyQ structure is updated.
Threads that are currently sleeping or that are waiting on a semaphore are
excluded from the readyQ. The scheduling through the dispatch_thread function
can be initiated by two different means: initiation within a semaphore operation
or initiation through a time slice timer event.

Semaphore. A thread uses the function mos_semaphore_wait to coordinate
access to a shared resource. If the resource is not ready, processing is suspended
until the resource associated with the semaphore becomes available (Alg. 2, part
A). If the resource is not immediately available (, line 3), the current thread
is suspended and a context switch using the previously explained function dis-
patch_thread is performed (line 7). Before the context switch is performed, the
function update_sleep_counters is executed (line 6). This function is used to
check if currently sleeping threads have to wake up and join the readyQ struc-
ture. In the MANTIS operating system, the user has the ability to make a
thread sleep for a period of time. Thus, suspended threads either wait on a
semaphore or they sleep. Pointers to the sleeping threads are stored in a sorted
list, the sleepQ. Sleeping threads are sorted according to their wakeup time,
such that the earliest thread to wake-up will be at the head of the queue. The
function update_sleep_counters updates the wakeup times and if threads in
the sleepQ are due, they are moved to the readyQ. Within an interrupt routine,
mos_semaphore_post is called to inform a waiting thread that a resource is now
available for processing (Alg. 2, part B). If a thread is waiting for the resource
(line 3), the thread is activated and added to the readyQ structure. Thereafter,
the update_sleep_counters function is called to check if sleeping threads have
to be activated as well. Finally, the thread waiting for the semaphore (or a
higher prioritized thread that was moved from the sleepQ) is activated using
dispatch_thread.

Time Slice Timer. A timer is set to create an interrupt every 20ms (Alg. 3).
This interrupt serves two purposes. First, the interrupt acts as a time slice for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 C. Duffy et al.

Algorithm 4. Modified semaphore functions
1: mos_semaphore_wait(Semaphore s)
2: s.val--
3: if (s.val<0)
4: if(readyQ.getThread!=NULL)
5: if(CURRENT_THREAD.state==BLOCKED_RUNNING)
6: CURRENT_THREAD.state==BLOCKED
7: s.addThread(CURRENT_THREAD)
8: #ifdef MANTIS_SLEEP
9: update_sleep_counters()
10: dispatch_thread()
11: else
12: CURRENT_THREAD.state=BLOCKED_RUNNING
13: do_power_management()

1: mos_semaphore_post(Semaphore s)
2: s.val++
3: if (s.thread.state==BLOCKED)
4: s.getThread().state=RUNNING
5: readyQ.addThread(s.getThread())
6: #ifdef MANTIS_SLEEP
7: update_sleep_counters()
8: dispatch_thread()
9: else
10: s.getThread().state=RUNNING

part A part B

the Round Robin scheduler, in which lengthly tasks are interrupted to give other
equal priority threads a processing time-slice, thus preventing process starvation.
Second, the periodic interrupts are used to check if threads in the sleepQ have to
wake-up. The update_sleep_counters function is called from the timer interrupt
to reactivate and reschedule sleeping threads. Obviously, threads sent to sleep
using this mechanism do not expect to sleep with a period less than the periodic
interrupt, 20ms. Finally, dispatch_thread is called to perform the context switch
to the new thread. In many application cases, the new thread will be the same
as the old thread.

4.3 Power Management

In MANTIS, thread state information is used to determine the level of power
management to be initiated. Sensor network processors have a number of differ-
ent low-power modes, providing a range of energy conserving states, varying in
power-conserving performance and wake-up responsiveness.

Thread state information is used in MANTIS to determine if a thread requires
a responsive wake-up, or if more relaxed wake-up times can be accepted. If the
thread is BLOCKED (Alg. 2, part A:line 3), it is assumed that fast wake-up
times are required and an idle power mode with fast wake-up response time is
chosen. If all threads reside in a SLEEPING state, then the thread sleep counters
are used to determine the next wakeup period. A timer is set to wakeup the
processor in time for the next thread event. Thus the processor can be put into
a deep sleep power mode and wakeup early enough to compensate for the slow
processor wake-up period.

Power management in the MANTIS kernel is implemented as a separate
thread, the idle thread. The idle thread is assigned the lowest priority and is
always in a ready state. Thus, if no threads are ready to be processed the idle
thread by default will be the next thread to be activated and the processor will
be transitioned into a low power state determined as previously explained.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 271

5 MANTIS Kernel Modifications

As shown in the preliminary research, MANTIS has the capability of task pre-
emption and thus critical high priority tasks can be executed deterministically.
However, the power consumption of a node running MANTIS is considerably
higher than the power consumption of a node running TinyOS. The high energy
consumption of the MANTIS operating system is caused by the processing over-
head for thread management. This relatively high overhead is mainly caused by
the (i) idle thread, the (ii) time slicing and the inefficient use of the (iii) kernel
queuing structures.

5.1 Idle Thread

As previously explained, power management is implemented in MANTIS within
the idle thread. If no other thread is currently active, the idle thread is dispatched
which subsequently initiates the appropriate power-saving state. This method of
power management is elegant as all power management code is contained in a
thread but it is also highly inefficient.

When all threads are inactive (SLEEPING or BLOCKED), a context switch
to the idle-thread is performed. Thereafter, as soon as one thread resumes ac-
tivity, another context switch is required. The new active thread might even be
the same thread that was active before the idle thread was called. Thus, for each
sleep activity two context switches have to be performed which are in most cases
not necessary on a typical sensor node running a single application.

To reduce the problem, the idle thread concept can be abandoned and threads
initiate a sleep state directly. Thus, the kernel thread handling overhead can be
greatly reduced, especially in scenarios where the same thread has to be activated
after a sleep phase, avoiding context switching.

In the modified MANTIS kernel, the power-management procedure that was
implemented as a thread is now implemented as a separate function that is
invoked directly by the kernel when no more threads are available to process.
The optimization requires a modification of the idle loop function. In the original
MANTIS kernel the idle loop is initially invoked by the kernel_init function to
execute for the duration of operating system operation as a separate thread.
In the modified MANTIS kernel, the idle loop is no longer encapsulated as a
thread, but instead directly invoked from the kernel blocking procedures, i.e.
mos_semaphore_sleep and mos_semaphore_wait (see Alg. 4). A new thread
state is added to the kernel, the BLOCKED_RUNNING state is used to signify
if a thread can be reactivated after power management without a thread switch.
A thread is first transitioned to this state when waiting for a semaphore while no
other thread is active (Alg. 4, part A:line 12). Thereafter, the power management
function is involved (line 13). If the processor is later reactivated and a resource
is then ready, the mos_semaphore_post function will be called and the condition
at Alg. 4 part B:line 3 will be used to determine if the blocked thread was already
running before the power-management was invoked. If this is the case, all thread
registers values still reside in the processor registers and a context switch is not

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

272 C. Duffy et al.

necessary. Instead, the thread state is changed to RUNNING, and the thread
resumes processing.

5.2 Time Slice Timer

As mentioned, MANTIS creates a time slice interrupt every 20ms to alternately
process threads of equal priority and addtionally update the sleepQ.

The periodic execution of the interrupt routine, and especially the necessary
updates to determine which threads from the sleepQ have to be woken, repre-
sents a significant thread management overhead. Additionally, the sleepQ is also
checked with each semaphore operation.

Round robin execution of equal priority threads is not really required in a
sensor node. Either, one thread can wait for the other to finish execution or,
if starvation is a concern, another priority level can be assigned to the thread.
The sleep function using the sleepQ can be implemented alternatively using a
timer interrupt combined with a semaphore. Therefore, the time slice timer can
be removed from the MANTIS kernel without losing vital kernel functionality.

In the modified MANTIS kernel, the time slicing functionality and the associ-
ated sleep function using the sleepQ are removed. More specificly, this function-
ality is moved to a separate library that can be included in the kernel if needed.
Applications can decide not to include the time slice timer and the associated
sleep functionality in favor of more efficient processing. Such applications can
therefor not invoke the mos_thread_sleep function to block a thread and must
instead call a semaphore and a timer to block a thread for a predefined period of
time. Equally prioritized threads in such applications execute sequentially until
completion instead of being processed in a round-robin fashion.

To include the default MANTIS time slice timer, the user need only specify
#define MANTIS_SLEEP in the application code. The MANTIS_SLEEP en-
vironment variable is used at part A:lines 8 and part B:6 in Alg. 4 to determine if
the thread sleep functionality is required and the thread sleep counters must be
updated with the update_sleep_counters function. Additionally, the time slice
timer is set active.

5.3 The Kenel Queues

The MANTIS kernel maintains 3 types of link-list quing structures. The readyQ,
sleepQ and semaphore queue are used to store threads in a READY, SLEEPING
or BLOCKED state respectivly. A thread cannot reside in more than one queue
at a time, and will therefore frequently switch between the queues as it changes
state. As MANTIS normally handles a small number of threads (12 is the default
number of threads supported [12]) simple data structures and ways of using them
can be implemented. For example, all thread pointers can be kept in a simple
array of pointers ordered by thread priority. Thread priority’s and the number
of threads normally do not change while an application is running and thus, the
structure can be kept fairly static. Refrencing threads with static arrays requires
far less processing that using a link-list.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 273

In the modified MANTIS kernel all linked list structures are removed from
kernel methods. The readyQ is changed from being an array of linked lists to a
simple array of thread pointers. The thread pointers are kept permanently in the
array while the threads exist. The thread pointers stored in this array are sorted
regarding thread priority. Thus, addition and deletion of threads is costly but
should not be common during a node’s operation as threads are normally created
at system startup. This change simplifies operations on the readyQ structure
when semaphore functions are called. Threads need not switch between queues,
a simple change of the thread state variable is all that is needed for a thread to
switch state. The function readyQ.getThread (Alg. 4, part A:line 4) returns the
first thread pointer in the readyQ array where the thread is in state READY.

If a thread is suspended and waits for a semaphore, the thread pointer is
added to the semaphore structure. However, a copy of the thread pointer remains
in the readyQ. The semaphore structure is also modified to point directly to
a single thread rather than a link-list of multiple threads. Thus, the function
s.addThread (Alg. 4, part B:line 5) is reduced to a simple pointer copy operation.
The flexibility of using a semaphore to block multiple threads is obviously traded
for efficiency.

6 Experimental Evaluation

The MANTIS kernel modifications are evaluated using exactly the same setup
that was used in the preliminary research. Again, the average task execution time
Et and the percentage of experiment time It spent with an idle CPU are mea-
sured. According to the goals of the kernel modifications, the event processing
capabilities of MANTIS should not be shortened and the energy consumption
should be improved due to a reduction of processing overhead.

6.1 Event Processing

Fig. 4 shows the measured average packet-processing time Et of the original and
the modified MANTIS kernel for sensing tasks of two different sizes.

The results show that the average processing time of the packet forwarding
task is reduced significantly. This decrease is due to the reduced processing over-
head of the modified MANTIS kernel. The processing time is measured from the
point the packet arrives to the time the packet is processed which includes possi-
ble context switching time (see Section 3.3). The pure packet-processing within
the packet-processing thread accounts for 1ms. Thus, the operating system can
not execute the packet forwarding faster than 1ms.

The trend in the packet-processing time is due to the fact that the packet-
processing might sometimes preempt an active sensing task. Additionally, packet
queuing effects become more dominant with increasing network load (an increas-
ing n).

It can be deduced from the measurements that no significant difference in the
variance of packet-processing timesbetween the orignial and modified MANTIS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 C. Duffy et al.

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
E

t (
m

s)

Tree Position [n]

Koriginal ls=1ms
Kmodified ls=1ms
TinyOS ls=1ms

 10

 20

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
E

t (
m

s)

Tree Position [n]

Koriginal ls=100ms
Kmodified ls=100ms
TinyOS ls=100ms

� � 1ms � � � � � �
 � � 100ms � � � � � �

Fig. 4. Average packet-processing time Et

kernel(same magnitude of variation in the execution times). Additionally the
processing speed is increased as the number of kernel overheads are reduced.

6.2 Energy Consumption

The percentage idle time is compared with the theoretical maximal possible
percentage idle time, Imax

k . Imax
k is calculated by taking only the application

processing of the abstract application scenario into account (see.Section 3.2).
Thus, Imax

k represents the percentage running time that the processor would
be idle using an ideal operating system which would have no operating system
processing overhead. Imax

k depends on the task durations ls and lp of sensing
and packet forwarding task respectively, the frequency of the sensing task fs,
the CPU speed scpu and the position n of the node in the abstract application
scenario. Imax

k is calculated using Equation (1):

Imax
k =

(
1 − fs

scpu
· (ls + lp · (2n − 1))

)
· 100 (2)

Fig. 5 shows the measured average idle time It of the original and the mod-
ified MANTIS kernel for sensing tasks of two different sizes. Additionally, the
maximum possible idle time Imax

k is shown in the graph.

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

Id
le

 T
im

e
I t

(%
 o

f T
)

Tree Position [n]

Koriginal ls=1ms
Kmodified ls=1ms
TinyOS ls=1ms

Imax
k ls=1ms

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

Id
le

 T
im

e
I t

(%
 o

f T
)

Tree Position [n]

Koriginal ls=100ms
Kmodified ls=100ms
TinyOS ls=100ms

Imax
k ls=100ms

� � 1ms � � � � � �
 � � 100ms � � � � � �

Fig. 5. Percentage idle time It

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Energy Efficiency of the MANTIS Kernel 275

The results show that the available idle time is now very close to the theo-
retical maximum. The difference is especially visible under high network load
(high n). The modified MANTIS kernel reduces overheads in context switches
which is valuable in cases of a high system load.

Compared with the original MANTIS, the kernel modifications improve the
idle time (by 8% for n = 8 with ls = 100ms). Compared with the TinyOS
operating system, the optimized MANTIS is now even outperforming TinyOS
in some cases. For example for ls = 100ms, n = 8, the modified MANTIS is 1%
better than TinyOS. If ls = 1ms, n = 8, the modified MANTIS is 0.3% worse
than TinyOS under a heavy load.

7 Conclusion

As it is shown in the paper, it is possible to make a multi-threaded sensor
network operating system as power-efficient as an event-based system. Thus, the
commonly accepted fact that multi threaded systems are not useful for sensor
networks due to their heigh energy consumption is invalid. Especially in scenarios
that require timely event processing, multi threaded systems can be considered
a useful option.

The MANTIS kernel modifications reduce the processing overhead needed for
thread management dramatically. This overhead is reduced to such an extent
that in usual sensor network application scenarios MANTIS has a similar overall
performance to TinyOS. As kernel overhead is directly related to energy effi-
ciency, the energy consumption of a MANTIS node is now similar to that of a
TinyOS node. After the kernel modifications, MANTIS is 1% more energy effi-
cient than TinyOS (in case of heavy load with n = 8, ls = 100ms). With the
original MANTIS kernel, TinyOS is 6.9% better than MANTIS (in case of heavy
load with n = 8, ls = 100ms).

We conclude that multi threaded systems can be used in sensor networks if
designed carefully.

References

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System ar-
chitecture directions for networked sensors,” in ACM SIGOPS Operating Systems
Review, vol. 34, pp. 93–104, December 2000.

2. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, and
R. Han, “MANTIS: System support for multimodal networks of in-situ sensors,” in
2nd ACM International Workshop on Wireless Sensor Networks and Applications,
pp. 50–59, September 2003.

3. A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible op-
erating system for tiny networked sensors,” in 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462, November 2004.

4. E. Trumpler and R. Han., “A systematic framework for evolving TinyOS,” in IEEE
Workshop on Embedded Networked Sensors, pp. 61–65, May 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 C. Duffy et al.

5. J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving real-time
systems using hierarchical scheduling and concurrency analysis,” in 24th IEEE
Internation Real-Time Systems Symposium, pp. 25–36, December 2003.

6. A. Dunkels, O. Schmidt, and T. Voigt, “Using protothreads for sensor node pro-
gramming,” in Workshop on Real-World Wireless Sensor Networks, June 2005.

7. C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan, “A performance analysis of
TinyOS and MANTIS,” tech. rep., University College Cork, November 2006.

8. A. Barroso, J. Benson, T. Murphy, U. Roedig, C. Sreenan, J. Barton, S. Bellis,
B. O’Flynn, and K. Delaney, “Demo abstract: The DSYS25 sensor platform,” in
2nd international conference on Embedded networked sensor systems, pp. 314–314,
November 2004.

9. Atmel Corporation, Atmega128 Datasheet, rev n ed., March 2006.
10. M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and M. Sri-

vastava., “Cyclops: In situ image sensing and interpretation in wireless sensor net-
works,” in In proc. 3rd international conference on Embedded Networked Sensor
Systems,, pp. 192–204, November 2005.

11. Nordic Semiconductor, Datasheet NRF2401, rev 1.1 ed., June 2004.
12. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gru-

enwald, A. Torgenson, and R. Han., “MANTIS OS: An embedded multithreaded
operating system for wireless micro sensor platforms,” ACM kluwer Mobile Net-
works & Applications Journal, special Issue on Wireless Sensor Networks, August
2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless
Sensor Node Lifetimes

Deokwoo Jung, Thiago Teixeira, Andrew Barton-Sweeney,
and Andreas Savvides

Embedded Networks and Applications Lab, ENALAB
Yale Univerisity, New Haven, CT 06520, USA

firstname.lastname@yale.edu

Abstract. This paper presents two lifetime models that describe two
of the most common modes of operation of sensor nodes today, trigger-
driven and duty-cycle driven. The models use a set of hardware parame-
ters such as power consumption per task, state transition overheads, and
communication cost to compute a node’s average lifetime for a given
event arrival rate. Through comparison of the two models and a case
study from a real camera sensor node design we show how the models
can be applied to drive architectural decisions, compute energy bud-
gets and duty-cycles, and to preform side-by-side comparison of different
platforms.

1 Introduction

The rapid progress of sensor networks in many applications is constantly fueling
the quest for extending the lifetime of battery-operated wireless sensor nodes.
In fact, many innovative platforms [9,3,8,11,13] have recently demonstrated sev-
eral important new techniques for increasing node lifetime. Despite these efforts
however, there are numerous situations where design decisions are rather oppor-
tunistic and tend to be influenced on the availability of low-power components
and techniques without considering the longer term trends in platform design.

To complement these effort, we draw from our experiences in building and
using sensor nodes to develop detailed models that characterize two widely used
operation patterns for sensor nodes today: trigger-driven and schedule-driven.
The models are constructed using Semi-Markov models by considering the power
consumption in different operational modes and the energy overheads incurred
during transitions. While similar predictions about lifetime could be obtained
using simulations, we argue that detailed models are also needed to provide ad-
ditional insight into how individual platform and application parameters affect
lifetime. For instance, one can use the lifetime models presented here to evalu-
ate potential gains from the design of hardware triggering mechanisms, software
driven scheduling and duty-cycle modes and power budgets. The models pre-
sented here can also be used to perform side-by-side comparison between existing
platforms under different application requirements, event arrival rates and de-
tection probabilities. With this, our models can be used as a deployment analysis
tool to determine which design is more appropriate for a certain application.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 277–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 D. Jung et al.

Our presentation is divided into two main parts. The first part states our as-
sumptions and derives our models. The second part demonstrates the usefulness
of our models in a case study drawn from our own experiences during the design
of a camera sensor node. The case study shows how the models developed here
can be applied to analyze the lifetime properties of a sensor node architecture
based on application characteristics, hardware properties and changing trends
in microprocessor and radio technologies.

2 Related Work

Node lifetime is a frequently discussed topic in platform design and analysis.
In the last couple of years new platforms such as LEAP[9], XYZ[8], iMote2[3]
and the Hitachi watch in [15] have demonstrated several new techniques for re-
ducing power leakage during sleep time. The LEAP [9] platform adopted a dual
processor/radio architecture to exploit the tradeoffs between power efficient and
high-power components. An Energy Management and Accounting Preprocessor
(EMAP) module based on a low-power MSP 430 processor has been designed
to manage different power domains on the LEAP board, enabling the high-end
sensors and processors only when needed. Intel’s iMote2 [3] uses dynamic fre-
quency and voltage scaling and a power management IC (PMIC) to control
different voltage domains on the node. The XYZ [8] node and the Hitachi watch
[15] have used an external real-time clock circuit to wake up the node processor
from ultra-low power deep-sleep modes. A number of proposals [10],[13],[4] de-
scribed energy dissipation at the node level. Nath et al.[10] used Markov chains
to analyze energy dissipation behavior per node. Each node is assumed to have
six distinct power modes and transitions over different modes with given prob-
abilities. Despite the detailed power mode consideration, this work is mostly
simulation-based (in ns-2) and does not consider the energy dissipation mod-
els pertaining to the power modes. Snyder et al. [13] demonstrated the validity
and effectiveness of their power consumption simulation tool, PowerTOSSIM,
by predicting energy consumption per node. Hardware components are charac-
terized at a very detailed level to simulate power consumption of a node as close
as possible. Another approach presented in [4] uses hybrid automata models for
analyzing power consumption of a node at the operating system level (TinyOS).

Our work differs from the above in that it tries to derive longer-term models
by considering a node’s hardware characteristics and operation patterns. Instead
of considering software optimizations, the emphasis of our analysis is in exposing
how a chosen combination of hardware components and operation patterns can
influence lifetime.

3 Model Overview and Assumptions

The analysis described below models two main sensing schemes commonly
employed in sensor nodes today: trigger-driven and schedule-driven. In trigger-
driven operation, the sensors are managed by a low-power pre-processing unit

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 279

Table 1. List of variables

Symbol Description Symbol Description
ETotal Total amount of energy per node Z Transmission time per packet

Si Power state of mode i σ Job inter arrival time per event
PM Power consumption at power λ Average event inter arrival rate

mode M , where M ∈ Si, i = 1...5 nij(t) # of i → j transitions during t
PS Power consumption at asleep period PW Power consumption at awake

of schedule driven node period of schedule driven node
pj Steady state probability of mode j Nσ The number of jobs per event
pij Transition probability from Cij Transition energy cost from

mode i to j mode i to j
CP CPU wake-up energy cost NP Number of packets per event
CR Radio wake-up energy cost TW CPU awake duration
L Channel-listening time of radio TS CPU asleep duration
Y Processing time per event Tc Duty period, Tc = T1 + T2

u Detection probability d Duty cycle, d = T1/(T1 + T2)

that continuously samples the sensors. This preprocessor performs a first-order
filtering of the data and wakes up a more powerful main processing unit if cer-
tain criteria are met. The LEAP node [9] and image sensors described in [14]
follow this model. In schedule-driven operation, the node’s sensors are connected
directly to the node’s main processor. To conserve energy, the processor follows
a schedule that alternates between a low-power mode (e.g sleep, deep-sleep or
shutdown) and a short, full-power mode in which the processor (or its ADC)
samples the sensors for interesting activity. If the desired event types are sensed,
it proceeds to make the necessary computations and transmits the outcome with
the radio if needed. The sentry nodes used in the Vigilnet project [5] follow this
type of model. In this case the sentry are asleep most of the time, and periodically
wake up to sample for activity.

3.1 Assumptions

The models described in this paper make the following assumptions:

1. The first-order statistical characteristic (mean value) of all random quantities
(events, processing time, etc) is known by observation and experiment from
the Ergodic property.

2. Event arrivals follow a Poisson distribution.
3. Processing and radio-transmission times are independent and identically dis-

tributed (i.i.d.) with arbitrary distribution.
4. When an event is detected, the node processes it and sends the information

to a base station (or another node) with probability α.
5. During the processing period, the CPU visits a limited number of low-power

states (e.g. idle state).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 D. Jung et al.

Table 2. Power state description

Trigger-Driven Node Schedule-Driven Node
Mode Preprocessor CPU Radio Sensor CPU Radio

S0 – – – Off Off Off
S1 On Off Off – – –
S2 On On Off On On Off
S3 On On TX On On TX
S4 On Idle Off On Idle Off
S5 On On RX On On RX

6. During the communication period, the radio visits a limited number of listen
(idle) states.

7. All power consumptions are constant during an operation and a fixed amount
of energy is required to turn on or off the CPU and radio.

The first three assumptions imply that the power state transitions may be
modeled as a semi-Markov chain [12] that can be used to compute a node’s av-
erage power consumption and lifetime. While assumption 2 may not always hold
true in all deployments a Poisson arrival rate is a representative model for many
applications. For example, the number of people entering a building is a well
known example of Poisson arrival [6]. For the purposes of our analysis we argue
that the Poisson assumption is a reasonable choice because our main interest is
to exercise the node hardware parameters that influence lifetime. Furthermore,
by fixing the distribution of arrival events in our models we provide a common
baseline for the comparison of many platforms by exercising their features under
the same underlying distribution. In order to include communication overhead
in the lifetime analysis, the same communication paradigm is adopted for both
the trigger-driven and schedule-driven models as stated in assumption 4. The
next two assumptions, 5 and 6, related to the idle state of the CPU and listening
state of the radio, are necessary to more accurately describe the power consump-
tion of those components. When an event is sensed by the node, the CPU will
usually go to a full-power, active mode to perform some processing or additional
sensing, but may alternate it with a temporary lower-power state to conserve
energy. This is accounted for in assumption 5. Meanwhile, it is common for MAC
protocols to listen to the radio channel before any transmission, to avoid packet
collisions [2]. For this we have introduced assumption 6. We also emphasize that
our models focus on node-level behaviors by examining the parameters of the
node hardware under different event arrival rates. Software and network level
optimizations are therefore not considered in this analysis.

3.2 Node Power Modes and Variables

Our analysis considers a simplified version of the power modes available on sensor
nodes, eliminating some of the impractical modes. The modes considered are
described in Table 2. To develop our models we also introduce a set of variables.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 281

Fig. 1. (a) Power profile of simplified trigger-driven node model, (b) Semi-Markov
chain of simplified trigger-driven node model

These are described Table 1. Our notation also uses a bar to denote expected
value (i.e the expected value of the variable A is Ā).

4 Lifetime Models

In this section, we will show that each sensor node can be modeled by an em-
bedded semi-Markov Chain. Let X(t) denote the power state at time t. Then
change of state X(t), t ≥ 0 does not solely depend on the present state, but also
the length of time that has been spent in that state. This characterizes a semi-
Markov chain, as states change in accordance with a Markov chain but there is
a random length of time between the changes. Let Hi denote the distribution
of time that the semi-Markov process spends in state i before making a transi-
tion, and let the mean be μi =

∫ ∞
0 xdHi(x). With Xn denoting the nth state

visit, Xn, n ≥ 0 becomes a Markov chain with transition probabilities pij . It is
also called the embedded Markov chain of the semi-Markov process [12]. Let Tii

denote the time between successive transitions into state i and let μii = E[Tii].
If the semi-Markov process is irreducible and if Tii has nonlattice distribution
with finite mean, then

pi ≡ lim
t→∞P [X(t) = i|X(0) = j] = lim

t→∞
Tt

t
, (1)

where Tt is the amount of time in i during [0, t], exists and is independent of
the initial state, j. In other words, pi equals the long-run proportion of time in
state i (the time spent in i over the combined time spent in all states). Suppose
further that the embedded-Markov chain Xn, n ≥ 0 is positive recurrent. Then
a stationary probability exists, which is the frequency of visiting each state for
infinite time duration . Let its stationary probability be πj , j ≥ 0. Then πj is
the unique solution of

πj =
∑

i

πipij ,
∑

j

πj = 1 (2)

and πj can be interpreted as the proportion of transitions into state j (over the
sum of all state transitions). Then the following theorem holds

pi =
μi

μii
=

πiμi∑
j πjμj

(3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 D. Jung et al.

Fig. 2. (a) Power profile of complete trigger-driven node model, (b) Semi-Markov chain
of complete trigger-triven node model

Using equations (2) and (3), one can compute the long-run proportion of time
in state i.

4.1 Trigger-Driven Lifetime Model

Figure 1a shows the simplest power model. In this model, the sensor node has
only three states, which can be represented by the semi-Markov chain in Fig-
ure 1b. This model does not account for any Idle or Listening modes on the
CPU or radio, respectively. However, in reality the CPU and radio often enter
Idle mode during the processing and communication stages. For example, when
an event is detected, the CPU has a choice of either processing the data, or
deciding to drop it (or quickly store it for later). In these situations, the CPU
may go back into an idle state to wait for the next job. Meanwhile, radios tend
to spend considerable energy listening to the channel before any actual trans-
mission due to impositions of the underlying MAC protocol. In IEEE 802.15.4,
for instance, less than 50 percent of energy is spent for actual transmission, and
listening activity accounts for more than 40 percent of energy consumption [2].
To take these factors into account, Figure 2a deals with the addition of the
idle and listening states of the CPU and radio. The updated semi-Markov chain
in Figure 2b shows that each processing and communication stage contains a
two-state embedded chain.

Given a long enough time period, T , the total time spent at state i can be
approximated as limT→∞ Ti = Tpi. Therefore, the total energy spent at state i
is ESi = Tpi × PSi , for i ∈ {1, 2, 3}, and the transition energy cost from state i
to j during T can be obtained as ESij = Cijnij(T). However, only the CPU and
radio wake-up costs (CP and CR, or, in ESij notation, ES12 and ES23) need to be
taken into consideration since the sleep cost (ES31) is negligible in comparison.
Since the total amount of energy spent at each state, ESi , and the transition
energy, ESij , cannot exceed the energy resource, Etotal, the following inequality
holds: ∑

1≤k≤3

ESk
+ ES12 + ES23 ≤ Etotal (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 283

Fig. 3. (a) Schedule-driven node power profile, (b) Power state transition during wake-
period

By applying (2) and (3) to Figure 1b, we can obtain the asymptotic node
lifetime as follows. A more detailed derivation can be found in [7].

TL(λ) ≤ [1 + λKT]ETotal

PS1 + λKE
(5)

In (5), KT and KE represent the average time and energy spent for a sensed
event respectively. Typically, KE � PS1 and λ � 1sec−1. As shown in the
denominator of (5), the power component can be roughly broken down into two
parts: λKE , the average power spent for computation and communication per
sensed event; and PS1 , the power spent to monitor the events. It can be easily
found that a sensor node spends more power monitoring an event than processing
it at λ ≤ PS1

KE
. The average steady-state power consumption of the trigger-driven

sensor node is simply given as:

PST,td(λ) =
PS1 + λKE

[1 + λKT]
(6)

For the simplest power model, Figure 1a, KT and KE are given as:

KT = Y + αZ, KE = Y PS2 + αZPS3 +
CP + αCR

1 + α
(7)

By taking into consideration the average power consumption and sojourn time
in these two-state chains as shown Figure 2b, KT and KE are given as:

KT = (σ + Y)Nσ + α(L + Z)N̄P

KE = (σPS4 + Y PS2)Nσ + α(LPS5 + ZPS3)N̄P +
CP + αCR

1 + α

(8)

4.2 Schedule-Driven Lifetime Model

Let k be the total number of duty cycles during the node’s entire lifetime,
and each εi the residual processing time after the ith awake state of the node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

284 D. Jung et al.

Additionally, let TW be the length of time when the node is awake. Then the
average node lifetime is obtained as following:

∑
0≤i≤k

((TW + εi)P̄W,i + (TS − εi)P̄S,i + CP) ≤ ETotal (9)

where P̄W,i and P̄S,i denote average power consumption of awake and asleep
periods during cycle i respectively. Note that each P̄W,i incorporates the power
expenditure of four power states: S2, S3, S4 and S5. As for the power computa-
tion, the schedule-driven node performs the same function as the trigger-driven
node when an event occurs during the awake period (Figure 3). Therefore, given
a long enough timespan, the average power consumption of the node during the
active period (P̄W,i) can be approximated by replacing in (6) the preprocessing
power with idle power, and setting CP = 0. The result is shown below:

lim
i−→∞

P̄W,i = PW (λ) =
PS2 + λK ′

E

1 + λK ′
T

(10)

In (10), K ′
T and K ′

E represent the average time and energy spent for a sensed
event respectively during awake period. Typically, K ′

E > PS2 and λ � 1sec−1.
As before, the nominator of (10) shows the power component during the awake
period can be roughly broken down into two factors, namely λK ′

E , the average
power spent for computation and communication per sensed event, and PS2 , the
static power spent during the awake period. It can be easily found that a sensor
node spends more power for the idle state than processing events at λ ≤ PS2

K′
E

.
For the awake period of the schedule-driven power model, (Figure 1b) K ′

T and
K ′

E are given as using (8):

K ′
E = (σPS4 + Y PS2)Nσ + α(LPS5 + ZPS3)N̄P +

αCR

1 + α

K ′
T = (σ + Y)Nσ + α(L + Z)N̄P

(11)

Using the fact that P̄S,i(t) is constant (P̄S,i ≡ PS0), the average node lifetime
can be obtained by applying (10) to equation (9):

TL ≈ (TW + TS)k ≤ ETotal(TW + TS)
[TW PW (λ) + TSPS0 + (PW (λ) − PS0)ε + CP]

(12)

Since it is typically the case that TW � ε, the term (P̄W (λ)−PS0)ε̄ can often
be ignored as TW P̄W (λ) � ε̄P̄W (λ) ≥ ε̄(P̄W (λ) − PS0).

The model derivation is now complete. Before applying these models, we have
verified their numerical correctness through simulation. The simulation iterates
through each state visited for a certain time period summing up all the power
overheads during the lifetime of the node. Due to space limitations, these results
are omitted from this paper.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 285

0

P
S

C

CP
T

0
()W SSlope P P

, ()ST tdP

, ()ST sbP u

0

0

, () ()

()

D
ST td S

c

W S

CP P
T

P P

*u u

A
verage P

ow
er

C
onsum

ption

Average Detection

Probability

STP Trigger driven node

Schedule driven node

Fig. 4. Trade-Off Diagram: Power versus Average Detection Probability

4.3 Trigger-Driven and Schedule-Driven Comparison

To meaningfully compare the two models, the event detection probability also
needs to be considered. For the trigger-driven case, the sensor and preprocessor
are always on, so we can assume that event detection happens with probability
one. This comes at a price, of course, of added power cost for the preprocessor.
The schedule-driven scheme, however, takes no such toll on power, but does so
at the expense of event detection probability. All events that do not coincide
with the node’s duty-cycle remain undetected. To compare, let us define two
random variables U and V to describe the number of Poisson sensor events
during TW and Tc respectively. Then the average detection probability, E

[
U
V

]
,

can be computed as:

E

[
U

V

]
=

∑
0≤v≤∞

E

[
U

v

∣∣∣∣V = v

]
PV (v) =

∑
0≤v≤∞

1
v

[
v
TW

Tc

]
PV (v) =

TW

Tc
= d

(13)
The second equality of Equation (13) comes from the fact that P (U = u|V =

v) has a binomial distribution, B(v, d), where d = TW

Tc
. As shown in Equa-

tion (13), the detection probability is simply the duty cycle of the schedule-driven
node. Therefore, we can express the trade-off diagram between the trigger-driven
and schedule-driven schemes as a function of the detection probability u (shown
in Figure 4), where the node lifetime of the schedule-driven node follows the
equation:

T̄L(u) ≤ ETotal

(P̄W (λ) − PS0)u + (PS0 + CP

Tc
)

(14)

From (14), the average steady-state power consumption of the schedule-driven
node can be found:

P̄ST,sb(u) = (P̄W (λ) − PS0)u +
(

PS0 +
CP

Tc

)
(15)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 D. Jung et al.

Processing and Communication Unit
Imote2

Preprocessor

PIR Motion
Detector

PIC
microcontroller

OV7649
Camera

PXA 27x

DMA
CC2420
Radios

Image
Data

Motion
Data

Wake-Up
Signal

Event
Sensing Motion

Sensing Image

Centroid
Data

To
BaseStation

Turn On

(a) (b)

Fig. 5. (a) iMote2 node with a COTS camera board, (b) Trigger-driven sensor node
with iMote2 fitted with a PIC microcontroller and PIR motion sensor

By superimposing the two average power consumption formulas
(Equations (15) and (6)), we can obtain a trade-off diagram as Figure 4. The
thick line denotes the lowest-power choice for a given detection probability. The

two curves meet at u∗ =
P̄ST,td(λ)−(PS0+ CP

Tc
)

P̄W (λ)−PS0
. The figure shows that for an ap-

plication that allows the use of sensors with detection probability smaller than
u∗, the schedule-driven scheme is a sound choice. For events with larger arrival
rates, u∗ gets shifted to the right, further favoring the schedule-driven scheme
for frequent, non-critical detections. Otherwise, if the application demands high-
accuracy, the trigger-driven scheme is a better alternative. Of course, multiple
nodes with complementary schedules may reduce the number of events that are
globally missed, but such a network-wide power analysis is out of the scope of
this paper.

5 Case Study: Using the Models to Characterize and
Make Decisions About a Camera Sensor Node

To demonstrate the usefulness of the models derived in the previous sections, we
now demonstrate their application in the decision-making process of an experi-
mental camera sensor node designed for the BehaviorScope project at Yale. Our
goal is to decide whether it makes sense to develop an improved version of the
camera node shown in Figure 5a. This camera node is an Intel iMote2 [3] coupled
with a custom camera board we have designed with a commercial, off-the-shelf
(COTS) image sensor, the Omnivision’s OV7649. The node is powered by three
AAA batteries (1150mAh capacity). The alternative design we are considering is
a new camera board that supports a wakeup preprocessor mechanism comprised
of a passive infrared (PIR) sensor for detecting motion and a small 8-bit PIC
10F200 microcontroller to act as a preprocessor. This configuration (described
in Figure 5b) would allow the node to follow a trigger-driven mode of operation.
Instead of periodically sampling the camera to detect activity, with this im-
provement the PXA 271 processor onboard the iMote2 will wait in a low-power
state until triggered by the PIC-based preprocessor that is always kept on for a
small energy overhead (Mode S1 in Table 5). In this state, the preprocessor will

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 287

Table 3. Reference scenario, measured (∗)

Parameter Value Parameter Value
λ 0.1/min Ȳ 2sec∗

Z̄ 3.8msec L̄ 0 msec
σ̄ 0 min N̄σ 1
α 1 Tc 10 min

N̄P 1 Total Energy 18.63 kJ

apply a thresholding algorithm to the samples it collects from the PIR sensor. If
the observed motion exceeds a predefined value, the preprocessor will power up
the iMote2 and camera board to acquire and process the images. If the image
processing reveals something of interest, the node the transmits the information
to a basestation. These transmissions take place with probability α. To provide
more concrete numbers in our case study, we set up the camera node to act as
a simple single target localization device. An event is defined as the complete
trajectory of human centroid in the range of camera sensor. In this setting, the
camera sensor node performs the following functions in order.

1. When a person enters the camera’s field-of-view, the preprocessor wakes up
the iMote2 and camera (only for the trigger-driven node).

2. When awake, the iMote2 continually computes the location of the person
at a frequency of 8Hz (8fps) until the person exits the coverage area of the
camera.

3. Once the person is out of the sensing range, the node transitions back into
the low power mode after sending a stream of locations to the base station.

According to our experiment, event duration is roughly 2 seconds. From our
event definition, processing time is actually the same as event duration, and any
incomplete trajectory (set of centroids) of a person is considered a missed event
(hard-decision). For example, if a person is entering into camera view, and 1
sec later a node wakes up and observes only half of the trajectory, then the
event is considered missed. For real-time computation, the node may transmit
the centroids as soon as they are acquired. Notice, however, that whether the
centroids are sent immediatelly or left for transmitting later is not of relevance
to our models, as long as the energy consumption of both cases is still the same.
From a lifetime perspective, the summation of the energy spent at each stage will
be same regardless of the processing order. The time between capturing a frame
to extracting a centroid is 123msec/centroid. Therefore, a node generates a total
of roughly 16 centroids per event and the total amount of information per event
is 96 Bytes. With a packet size of 119 Bytes (including 23 Byte of packet header)
transmitted at the rate of 250 kbps, the packet transmission takes 3.8msec. As
a reference scenario, we set the system parameter values as specified in Table 3.

The PXA271 processor provides six power modes: Normal, Idle, Deep Idle,
Standby, Sleep and Deep Sleep. Each of the six modes have different levels of
power consumption and different transition times to the Normal mode. The Nor-
mal mode is the state where all internal power domains and clocks are enabled

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

288 D. Jung et al.

Table 4. Typical power-consumption specifications of schedule-driven camera sensor
node (iMote2) at 104 MHz CPU Core frequency, 4MHz PIC and 0dBm TX Power

CPU Camera Radio
Mode PXA271 OV7649 CC2420 Total

S0 Deep Sleep Standby Shutdown
1.8mW 8mW 144nW 9.8mW

CP 48.63mJ - 691pJ 48.63 mJ

252msec - 970μsec 253msec

S2 Normal Active Idle
193mW 44mW 712μW 237.7mW

S4 Deep Idle Active Idle
88mW 44mW 712μW 132.7mW

CR - - 6.63μJ 6.63μJ

- - 194μsec 194μsec

S3 Normal Active TX
193mW 44mW 78mW 315mW

S5 Normal Active RX
193mW 44mW 78mW 315mW

and running. At Idle and Deep Idle modes, the CPU core stops being clocked,
but for the latter the PXA is first switched into 13 MHz frequency. Standby
mode puts all internal power domains into their lowest power mode except for
the real-time clock and the PLL for the core. At Sleep and Deep Sleep modes,
the PXA271 core power is turned off. Furthermore, in Deep Sleep mode all clock
sources are also disabled. Therefore, Standby mode is the lowest power mode that
does not require the node to reboot. To reason with the different design possibil-
ities, we measured the power consumption and transient time of the iMote2 at
different operational modes that correspond to the schedule-driven and trigger-
driven modes we have previously defined in our models. The measurements for
these modes are shown in Tables 4 and 51. More detailed information can be
found in [1]. Both tables follow the power mode definitions introduced in Ta-
ble 2. Since the iMote2 does not provide any special interface for measuring the
power of the PXA CPU, we measured the total power drawn when the radio
is shutdown.

Question 1: What is the expected lifetime for the existing (schedule-driven,
Figure 5a) and proposed (Figure 5b) configuration? Using our measurements in
Table 4, the schedule-driven node will last for only 1.61 days if it is always on,
continuously sampling, since T̄L(1) = ETotal

P̄W (0.1/min) by plugging u = 1 and Tc = ∞
in Equation (14). The lifetime of the alternative, trigger-driven configuration
depends on the event arrival rate and can be computed using the model in

1 In our tables Normal and Active modes have similar meanings. We opted on using
two different terms to be consistent with the naming conventions of the datasheet
for each device.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 289

Table 5. Typical power-consumption specifications of trigger-driven camera sensor
node(iMote2) at 104 MHz CPU Core frequency, 4MHz PIC and 0dBm Tx Power on a
CC2420 radio

Preprocessor CPU Camera Radio
Mode Motion Sensor PIC10F200 PXA271 OV7649 CC2420 Total

S1 On On Standby Standby Shutdown
3.6μW 340μW 17mW 8mW 144nW 25.34mW

CP - - 2.2mJ - 114nJ 2.2mJ
- - 11.432msec - 970μsec 12.4msec

S2 On On Normal Active Idle
3.6μW 340μW 193mW 44mW 712μW 238.05mW

S4 On On Deep Idle Active Idle
3.6μW 340μW 88mW 44mW 712μW 133.05mW

CR - - - - 6.63μJ 6.63μJ

- - - - 194μsec 194μsec
S3 On On Normal Active TX

3.6μW 340μW 193mW 44mW 78mW 315.34mW

S5 On On Normal Active RX
3.6μW 340μW 193mW 44mW 78mW 315.34mW

Equation (8). The trend for different arrival rates is shown in Figure 6b. At our
default configuration (PXA and Camera in Standby Mode), the trigger-driven
iMote2 would only last 8.45 days at most (1.03 days at least). Figure 6b shows
that less than 4 days of lifetime gain would be achieved by completely turning off
the camera sensor board. It reveals the important design guide that in order to
obtain a significant lifetime gain (more than 10 times), the trigger-driven node
ultimately has to stay at Deep-Sleep mode during preprocessing stage, which is
the lowest power state that can be achieved by the node with software control.
Question 2: Given a specific arrival rate for a certain application, and a life-
time requirement, what is the maximum power a pre-processor(and sensor) can
consume? To obtain the power budget for the pre-processor we need to solve
for PS1 of the trigger-driven model in (5). The lifetime trend at different event
arrival times as a function of preprocessor power is shown in Figure 6c.
Question 3: If we don’t build the proposed board and use a duty-cycle instead,
what is the expected lifetime for a certain detection probability? We can answer
this question by plugging in the detection probability u in the lifetime model for
the schedule-driven node described by Equation (14). The expected lifetimes for
different detection probabilities are shown in Figure 6a.
Question 4: Suppose we had an ideal sensor preprocessor (power cost=0) what
would be the lifetime of the node at a certain arrival rate? This trend is shown
in Figure 6d. If we use Standby mode as the lowest power mode, in a trigger-
driven configuration, the node will last for only 8.62 days! Also, if we entirely
disable the preprocessor, the node will operate as in the schedule-driven model
with duty-cyle=0, missing all events. Even so, the node lifetime is only 8.62

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 D. Jung et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

Detection Probabilty

Li
fe
tim
e
(d
ay
s)

10-3 10-2 10-1 100 101 102100

101

102

Li
fe

tim
e

(d
ay

s)

Event Inter-Arrival Rate (1/min)

iMote2 Deep Sleep
Camera board Off

PXA Standby Mode
Camera board Off

PXA Standby Mode
Camera Standby

94.15

12.33
8.45

(a) (b)

0 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

Preprocessor (mW)

Li
fe

tim
e

 (d
ay

s)

=1/10min
PXA in Standby Mode

=0
PXA in Standby Mode

=
PXA in Standby Mode

=0
iMote2 in Deep-Sleep Mode

10-3 10-2 10-1 100 1010

5

10

15

20

25

Event Inter-Arrival Rate (1/min)

Li
fe

tim
e

(d
ay

s)

Schedule-Driven iMote2
Trigger-Driven iMote2

Preprocessor=0 mW
PXA in Standby Mode

Preprocessor=0 mW
iMote2 in Deep Sleep Mode

Duty Cycle=0
iMote2 in Deep Sleep Mode

Duty Cycle=0
PXA in Standby Mode

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

Detection Probabilty

Li
fe

tim
e

(d
ay

s)

10-3 10-2 10-1 100 101 1020

100

200

300

400

500

600

700

Event Inter-Arrival Rate (min-1)

Li
fe

tim
e

(d
ay

s)

(e) (f)

Fig. 6. a) Lifetime trend versus detection probability for question 1, b) Lifetime trend
versus arrival rate for question 1, c) Lifetime trend for question 2, d) Lifetime trend for
question 3, e) Lifetime trend versus detection probability for the sentry node described
in VigilNet[5], f) Predicted hypothetical lifetime trend versus arrival rate for the sentry
node described in VigilNet[5]

.

days, indicating that we should try to operate at power levels lower than the
Standby mode. Comparing Figure 6c and Figure 6d, we notice that just lowering
power consumption of preprocessor does not impact the lifetime trend of the
trigger-driven node since PS1 is heavily dominated by the power consumption
of the camera board and PXA at Standby mode. Indeed, our computation shows

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model-Based Design Exploration of Wireless Sensor Node Lifetimes 291

that for rare events the lifetime increases to 94 days, with the camera board
off and the iMote2 in Deep Sleep mode (Figure 6b). Much to our surprise, our
models have shown that the addition of a preprocessor and trigger-driven op-
eration will not provide substantial lifetime gains. This is mainly due to the
high power consumption in the Standby mode of the PXA and camera. The
trends also indicate that it is unlikely to significantly improve lifetime by ma-
nipulating the processor power modes alone. A better strategy would be to con-
sider mechanisms that disconnect the entire node from the power supply as
suggested in [8]. According to our models, the use of such a mechanism would
increase the lifetime of the schedule-driven node to 552 days, a large improve-
ment over the currently predicted 8.45 days for a non-ideal preprocessor (see
Figure 6d).

As a sanity check, we also used our model to predict the lifetime of the Micaz
nodes used in the Vigilnet project [5]. Using our model, we computed the ex-
pected lifetime of a sentry node to be about 442 hours (18.5) days as shown in
Figure 6d. According to [5], a sentry node will last 90 days with a role rotation
of 4-5 nodes and 25% of sentry duty cycle. Multiplying our prediction by 5 to
account for role rotation, our model will anticipate a lifetime of 92.5 days, an
estimate that is very close to the lifetime of the real deployment reported by the
authors of [5]. Furthermore, Figure 6f shows that the lifetime of the sentry node
will significantly increase if we convert it into a trigger-driven node using the
same preprocessor as before.2 Such a high lifetime gain comes from the fact that
the power consumption of sentry node at Sleep state is extremely low (42 μW).

6 Conclusion

In this paper, we presented parametric lifetime model for trigger-driven node
and schedule-driven node that also takes the associated transition overheads into
consideration. The application of the models in making decisions about a camera
node platform has helped us to isolate the dominant factors that limit lifetime in
our design and provided valuable insight on how to proceed with the architecture.
In the near future we are working on extending our models to cover more complex
cases involving multiple processors and radios. Additional updates about this
work can be found on our website at http://www.eng.yale.edu/enalab.

Acknowledgements

This work is funded in part by the NSF under contracts 0615226 and 0448082.
The authors are also thankful to their collaborators Mani Srivastava (UCLA),
Deepak Ganessan (UMASS Amherst), Mark Corner (UMASS Amherst),
Prashant Shenoy (UMASS Amherst) and Lama Nachman (Intel) for the fruitful
discussions around this work.
2 This is a hypothetical lifetime since [5] does not consider a trigger-driven sentry

node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.eng.yale.edu/enalab

292 D. Jung et al.

References

1. A. Barton-Sweeney, D. Jung, and A. Savvides. imote2 node and ENALAB camera
module power measurements. In ENALAB Technical Report: 090601, Sep 2006.

2. B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene. Energy
efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks:
Modeling and improvement perspectives. In Design, Automation, and Test in
Europe (DATE), pp.196-201, March 2005.

3. L. Nachman. Intel Corporation Research Santa Clara. CA. New tinyos platforms
panel:iMote2. In The Second International TinyOS Technology Exchange, Feb
2005.

4. S. Coleri, M. Ergen, and T. Koo. Lifetime analysis of a sensor network with hy-
brid automata modeling. In 1st ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), September 2002.

5. T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru, J. A.
Stankovic, and T. Abdelzaher. Achieving long-termsurveillance in vigilnet. In
Infocom 2006, April 2006.

6. A. Ihler, J. Hutchins, and P. Smyth. Adaptive event detection with time-varying
poisson processes. In KDD ’06: Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, 2006.

7. D. Jung, A. Barton-Sweeney, T. Teixeira, and A. Savvides. Model-based design ex-
ploration of wireless sensor node lifetimes. In ENALAB Technical Report: 090602,
Sep 2006.

8. D. Lymberopoulos and A. Savvides. XYZ: A motion-enabled, power aware sensor
node platform for distributed sensor network applications. In Information Process-
ing in Sensor Networks (IPSN), SPOTS track, April 2005.

9. D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser. The low power en-
ergy aware processing (LEAP) embedded networked sensor system. In Proceedings
of Information Processing in Sensor Networks, IPSN/SPOTS, April 2005.

10. R. A. F. Mini, M. V. Machado, A. A. F. Loureiro, and Badri Nath. Prediction-based
energy map for wireless sensor networks. In Elsevier Ad-hoc Networks Journal
(special issue on Ad Hoc Networking for Pervasive Systems), March 2005.

11. J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power wireless
research. In The Fourth International Conference on IPSN/SPOTS, April 2005.

12. S. M. Ross. Stochastic processes, second edition, pp213-218. In Jonn Wiley and
Sons,Inc., April 1996.

13. V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Simulating
the power consumption of large-scale sensor network applications. In SenSys’04,
November 2004.

14. T. Teixeira, E. Culurciello, D. Lymberopoulos J. Park, A. Barton-Sweeney, and
A. Savvides. Address-event imagers for sensor networks: Evaluation and program-
ming. In Proceedings of Information Processing in Sensor Networks (IPSN), April
2006.

15. S. Yamashita, S. Takanori, K. Aiki, K. Ara, Y. Ogata, I. Simokawa, T. Tanaka,
K. Shimada, and Ltd.) H. Kuriyama (Hitachi. A 15x15mm, 1ua, reliable sensor-net
module: Enabling application-specific nodes. In IPSN SPOTS 2006, April 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 293 – 308, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multithreading Optimization Techniques
for Sensor Network Operating Systems

Hyoseung Kim and Hojung Cha

Department of Computer Science, Yonsei University
Seodaemun-gu, Shinchon-dong 134, Seoul 120-749, Korea

{hskim, hjcha}@cs.yonsei.ac.kr

Abstract. While a multithreading approach provides a convenient sensor
application developing environment with automatic control flow and stack
managment, it is considered to have a larger data memory requirement and
energy consumption than an event-driven model. Current threaded sensor
operating systems unfortunately do not provide appropriate solutions. This
paper presents multithreading optimization techniques for sensor network
operating systems. Our work focuses on the three major problems of
implementing threads on resource-constraint sensor nodes—memory resources,
energy consumption, and scheduling policy. Single kernel stack and the thread
stack-size analysis techniques reduce the RAM requirement of thread model.
The variable timer saves energy consumption and the event-boosting thread
scheduling reflects the characteristics of sensor applications and provides fast
response time to threads. The experimental results on a common sensor node
show that the multithreaded system could be effectively implemented with
reasonable overhead.

Keywords: sensor network operating system, multithreading optimization
technique.

1 Introduction

Wireless sensor networks have been well-studied in terms of the increasing variety of
hardware and the development of diverse applications which now require
sophisticated system software. Sensor nodes are normally battery-operated, memory-
limited and have low computational power. Sensor network operating systems,
therefore, should support high concurrency with minimal memory usage and low
energy consumption. Unlike general purpose operating systems, popular sensor
operating systems such as TinyOS [1] and SOS [2] adopt an event-driven model to
meet these tight constraints. They execute applications with reactive event handlers
and cooperatively-operated run-to-completion tasks. Li et al. [3] reported that the
event-driven TinyOS achieves about a 30-fold improvement in data memory
requirement and a 12-fold reduction in power consumption over general purpose
multithreaded embedded operating systems.

Although the event-driven sensor operating systems are implemented efficiently in
a resource-constraint environment, they do not provide all the functions of general

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 H. Kim and H. Cha

purpose operating systems. Developers typically suffer from the manual configuration
when programming applications. With TinyOS and SOS, for example, developers
have to split a long-running task, which can unnecessarily delay other tasks, into
several phases. Programmers also take responsibility for managing event handlers’
states. As tasks are inter-dependent in the execution context, the repeated analysis of
system concurrency and system restructuring is inevitable in order to meet the
changes in application requirements [4].

In contrast to the event-driven approach, multithreading inherently provides high
concurrency with preemption and automatic state management. It also allows
programmers to specify control flow. Sensor applications frequently request sensing
and radio communication. With an event-driven model, the programmers may split
one conceptual function into multiple functions for I/O operations, but multithread
systems easily handle it by blocking the I/O interface. Synchronization and deadlock
problems experienced with thread [5] can be managed by compiler support and
development tools [6]. As most existing development tools are based on threads,
multithread systems could provide a general and more efficient development
environment. However, threads tend to incur more time and space overhead than
events. Stack reservation for each stack is indispensable for multithreading systems.
Context switching overhead is caused by preemption and blocking. Kernel services,
such as a scheduler and system timer management, are also required. Data memory
and energy requirement of multithreading is an obvious obstacle to the resource-
constraint sensor nodes. In addition, a scheduling policy optimized for sensor
applications should be developed. Although the multithreading approach is attractive
in sensor application developments, current thread-based sensor operating systems [7,
8] do not provide appropriate solutions for overhead problems or a scheduling issue.
This has motivated us to develop multithreading techniques specifically designed for
sensor nodes.

This paper presents optimized techniques for the implementation of multithreaded
sensor network operating systems. The thread model for sensor nodes should consider
memory resource, energy consumption, and scheduling policy. The proposed
techniques contribute to each issue by providing multithreading functions while
consuming reasonable overhead compared to existing event-driven sensor operating
systems. Our techniques are implemented in the RETOS operating system [9, 10, 11],
although they are applicable to other thread-based sensor operating systems. The
effectiveness of the proposed techniques is validated by experiments conducted on a
commercial mote running the RETOS operating system.

The rest of this paper is organized as follows: Section 2 describes the proposed
multithreading optimization techniques; Section 3 validates the effectiveness of the
mechanism through real experiments; Section 4 discusses related work; and Section 5
concludes the paper.

2 Thread Optimization for Sensor Applications

This section explains optimization techniques for implementing threads on sensor
nodes. Considering the resource constraints of conventional sensor hardware, we
propose various techniques in our work: Single kernel stack reduces the size of thread

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 295

stack requirement, and Stack-size analysis automatically assigns an appropriate stack
size to each thread. Variable timer reduces the overhead of system timer, hence
reducing energy consumption. Event-boosting thread scheduler satisfies the response
time requirement for sensor applications.

2.1 Single Kernel Stack

Multithread systems require stack reservation for each thread. The amount of the
required stack of a thread is the sum of the resource required by thread functions,
system calls, interrupt handlers and hardware context saving. In general, sensor
applications are implemented with system API such as radio packet transmission, and
system calls and interrupt handlers use a large portion of the thread stack. Considering
these characteristics, we propose single kernel stack management for data memory
efficiency. Single kernel stack management separates the thread stack into kernel and
user stacks, and maintains a unitary kernel stack for system calls and interrupt
handlers to reduce the thread stack bound. Equation 1 explains the total stack size for
the multiple kernel stack system. The size for the single kernel stack system is
obtained by Equation 2. The sum is computed for the number of application threads.
Without any threads, multiple kernel stack systems and single kernel stack systems
have the same data memory usage for stack. However, the effect of the single kernel
stack becomes more significant when the number of threads increases.

∑ ++ } /)max() {max(contextwhISRcallsystem (1)

∑++) /()max() max(contextwhISRcallsystem
(2)

In the single kernel stack system, the kernel stack is shared among every thread. A
controlled access to the kernel stack is implemented in such a way that the system
does not arbitrarily interleave execution flow, including thread preemption, while in
the kernel mode. Thread switching could be performed immediately prior to returning
to user mode and executing an idle function, such as at the time when all work pushed
on the kernel stack is completed. With thread preemption, hardware contexts are
saved in each thread’s thread control block (TCB) due to kernel stack sharing.

Although the single kernel stack is unable to preempt threads in the kernel mode, it
does not inhibit real-time operation of the kernel. With this technique, the execution
context and the development environment of the kernel and the user are isolated.
Because the kernel is interrupt-driven, the kernel developer, based on underlying
system analysis, gives high concurrency to system components such as device drivers
or the network stack.

2.2 Stack-Size Analysis

With MMU-less hardware, application developers must estimate accurate thread stack
size to optimize the memory usage. A given stack size that is less than the size
required by the thread causes stack overflow and easily crashes a system. Assigning a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

296 H. Kim and H. Cha

large stack would cause data memory overhead. The proposed stack-size analysis
provides minimal and system-safe stack requirements for each thread, so the kernel
automatically allocates an appropriate stack size for threads.

Table 1. MSP430 instructions concerned with stack usage

Instruction Stack usages Description
push var + 2 Push a value
pop var - 2 Pop a value
call #label + 2 Push return address

sub SP, N + N Directly adjust stack pointer (function prologue)
add SP, N - N Directly adjust stack pointer (function epilogue)

The proposed stack analysis produces a control flow graph of an application.
Function label, start address and internal stack usage are used as nodes in the graph,
and branch instructions are used as edges. The technique then calculates the
maximum possible thread stack size with a straightforward depth-first search. The
operations are conducted with a binary image, which results from linking the
application programmer’s code with libraries and compiler-generated codes. Table 1
shows the TI MSP430 instructions, which are related to detecting a function’s stack
usage. Unlike previous stack bounding techniques [12, 13], which focus on the
behavior of the interrupt handler, the proposed technique is based on a system where
interrupts are handled by the kernel stack. Thus, this technique determines exact stack
usages of functions using the instructions listed in Table 1 only.

The set of start nodes for traversing the flow graph consists of every thread
function in an application. Finding out the start nodes depends on the programming
language and thread library. On the RETOS operating system, where a user programs
a sensor application with standard C and pthread library, we can detect the start node
for the main thread with the label “main” and each child thread with the parameter of
pthread_create(). The thread start address and stack requirement are stored in the
header field of application files, and the kernel looks up the information to create a
new thread with optimal stack size.

The proposed technique, however, cannot analyze stack size if the application
uses recursive calls or indirectly addressed function calls. Recursive calls create
cycles in the flow graph and indirect calls cause a disconnect in the flow graph. In
these cases, there is no proper way to know the accurate thread stack size. We have
implemented the proposed technique as a tool that notifies users if the analysis fails.
In addition, we allow users to determine the default thread size on the RETOS
operating system, which is equipped with the application safety mechanism [9]. The
mechanism inserts dynamic checking code for stack safety to the application, when
the stack-size analysis fails. With the safety mechanism, users do not need to be
aware of any restrictions such as explicit prohibition of recursive calls, and the
system is safe.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 297

2.3 Variable Timer

The multithreading model of computation generally incurs energy overhead due to
context switching, scheduler execution, and system timer management. Context
switching and scheduling are known to be the source of major overhead in threaded
systems. However, the frequency of scheduling in the threaded system is much lower
than that of passing messages between handlers in the event-driven system [6], and
the context saving and restoring overhead is only a moderate issue in common sensor
nodes [8]. In our work, we propose a variable timer technique to minimize energy
consumption of the multithreading system.

The system timer manages timer requests from threads and updates the remaining
time quantum of currently running threads. In general-purpose threaded systems, the
timer management relies on a periodic timer interrupt. This continuously triggers the
interrupt handler whether timer handling requests are present or not, and so increases
energy consumption of the sensor node, which stays idle most of the time. Moreover,
the periodic timer interrupt restricts the time accuracy within the timer interval. If the
interrupt interval is reduced, a significant amount of system power is wasted in order
to handle the interrupt. Instead of the periodic timer, the system may use a variable-
time tick rate by way of reprogramming the tick rate with an upcoming timeout
request. The variable timer can solve these problems. General purpose systems do not
use the variable timer because the cost of reprogramming timer requests from
hundreds of threads is much higher than for the periodic timer interrupt. Alternately,
sensor network applications are typically programmed with a relatively small number
of threads and timer requests. Thus, it is reasonable to adopt the variable timer tick
rate for threaded sensor systems.

Fig. 1. Variable- and periodic-timer based systems

The variable timer reprograms the timer interrupt interval to the earliest upcoming
timeout among the time quantum of currently running thread and the timer requests,
such as the sleep() system-call. Figure 1 compares the periodic timer and variable
timer systems. General-purpose systems handle the time quantum expiration through

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 H. Kim and H. Cha

the periodic timer interrupt. In Figure 1(a), thread B wants to wake up after 3ms, but
with the 10ms interval it is difficult to meet this request in the system. Unnecessary
timer interrupts are generated per 10ms. Figure 1(b) shows the case of the variable
timer system; thread B can preempt other threads at 3ms, which is the time when
thread B is originally requested, and no more timer interrupts are invoked. The effect
of the variable timer system depends on the cost and frequency of timer
reprogramming. Section 3 evaluates the correlation of the cost for reprogramming a
timer and the frequency on a real sensor node device.

2.4 Event-Boosting Thread Scheduling

The RETOS operating system supports the POSIX 1003.1b real-time scheduling
interface [19] to enable both programmers’ explicit priority assignment and kernel’s
dynamic priority management. Threads are scheduled by three policies, SCHED_RR,
SCHED_FIFO, and SCHED_OTHER, and the system-calls are provided for
programmers to adjust their policy and priority. SCHED_OTHER is the default policy
and always has less priority than SCHED_RR or SCHED_FIFO.

Fig. 2. Typical sensor applications on the multithreading system

We now describe the SCHED_OTHER policy proposed in our work. Although
users do not manually give priority assignment to application threads, the operating
system should satisfy threads with fast response time. Figure 2 shows typical sensor
application codes. The key objectives of common sensor applications are packet
forwarding and sensing. Threads usually receive a packet, process data, and forward
the result. Threads also collect sensor data, process it, and sleep for a regular period.
General operating systems typically classify threads into I/O bound and CPU bound,
and they prefer I/O bound threads for high interactivity. From the aspect of sensor
node operation, almost every sensor thread is treated as I/O bound, or else the thread
property is infinitely switched between I/O bound and CPU bound due to the iteration
of I/O and computation in the sensor thread. Therefore, a scheduling policy which
specifically concerns sensor network applications should be developed to provide fast
response time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 299

Table 2. Priority adjustment for event-boosting

 Dynamic priority Description
Init. 4 Thread created
sleep() +3 Timer request
radio_recv() +2 Radio event request
sensor_read() +1 Sensor event request
Consuming CPU time - 1 per 8ms Decrease dynamic priority

In our work, we propose an event-boosting thread scheduler to increase the event
response time of threads. The scheduler directly boosts the priority of the thread
requesting to handle a specific event. Events in the sensor network applications are
defined as the expiration of the timer request, the reception of a packet, and the
completion of sensing. A thread issues a blocking system-call to handle one of these
events, and the kernel enhances the thread’s priority according to the type of system-
call. When an event occurs, the priority-boosted thread will be able to rapidly preempt
other threads. The priority of the thread reduces with the CPU-consumed time. Hence,
other threads have chances to be re-scheduled. Table 2 shows the priority adjustment
for event-boosting scheduling policy. Threads are created with the initial priority, and
obtain higher priority if they call sleep(), radio_recv(), and sensor_read() system-calls.
Thread priority is decreased by 1 per 8ms of consumed CPU time. Concerning the
priority adjustment, we have not conducted any formal evaluation on the value of
adjustment, but rather used a subjective user study on the RETOS operating system.
We considered that the explicit timer request is the most critical job and the radio
event is more important than the sensor event.

In the real implementation, it is also important to avoid starvation and to provide
fairness. Therefore, we compare the remaining thread time quantum if there are
equally prioritized SCHED_OTHER threads. When all threads in the run-queue have
exhausted their time quanta, the scheduler re-computes the time quantum duration of
all threads in the system. The idea for assigning a new quantum is adopted from
Linux, which gives half the previously remaining quantum plus a default time
quantum to threads.

3 Evaluation

This section presents the experimental results of the proposed multithreading
techniques. The experiment evaluates the efficiency of single kernel stack and stack-
size analysis, the timer handling overhead of variable timer management, and the
concurrency supports of an event-boosting scheduler. Furthermore, the overall effect
of optimization techniques are validated by running a real sensor application both on
RETOS and TinyOS, the former being a dual mode based multithreaded system and
the latter being a single mode and event-driven operating system. RETOS have been
implemented for the TI MSP430 F1611 (8Mhz, 10Kb RAM, 48Kb Flash) and
CC2420 (IEEE 802.15.4) based Tmote Sky hardware platform [14]. The execution
results are based on the average results over 10 sets of 30 runs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

300 H. Kim and H. Cha

3.1 Effect of Stack Optimization

The single kernel stack and stack-size analyses are to optimize stack usage of the
multithreaded system. To adequately evaluate the efficiency of these techniques, we
considered entire stack usage on the system. Seven sensor network applications were
used for the test. MPT_mobile and MPT_backbone are decentralized multiple-object
tracking programs [15]. When the MPT_mobile node moves around, it sends both an
ultrasound signal and beacon messages every 300ms to nearby MPT_backbone nodes.
MPT_backbone nodes then report their distance to the mobile node, and MPT_mobile
computes its location using trilateration. R_send and R_recv are programs to send and
receive radio packets with reliability. Sensing samples the data and forwards it to the
neighbor node. Pingpong makes two nodes blink in turns by means of a counter-
exchange. Surge is a multihop data collecting application which manages a neighbor
table and routes the packet.

Table 3. Kernel stack and thread context block requirements

 Kernel stack size
(byte)

Increase of TCB+
H/W context (byte)

Single kernel stack system 76 18
Multiple kernel stack system 76 16

Table 4. Efficiency of a single kernel stack based system

Applications Num. of User stack Data section Kernel stack (byte)
 Threads (byte) (byte) Multiple Single

MPT_backbone 1 68 131 152 76
MPT_mobile 2 78 416 228 76

R_send 3 78 217 304 76
R_recv 3 50 214 304 76
Sensing 2 18 157 228 76

Pingpong 1 8 106 152 76
Surge 4 98 336 380 76

In order to evaluate the single kernel stack, we have implemented two versions of
RETOS to measure the effectiveness of stack usage reduction. For the easy stack size
comparison, the multiple kernel stack system also stores the hardware context in the
TCB. Table 3 shows the size of the required kernel stack and the increase of TCB plus
the hardware context for each kernel. The kernel stack requirement is detected by
executing all system-calls and interrupt handlers in each system. As the two systems
have the same kernel control flow except the kernel stack management scheme, the
kernel stack size on the single kernel stack system is identical with the size on the
multiple kernel stack system. The increase of TCB plus the amount of saving the
hardware context on the single kernel stack system, however, differs from the
multiple kernel stack system, since the single kernel stack system requires two more
bytes to store the thread return address.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 301

Table 4 shows the results of running sensor applications on two systems. With the
multiple kernel stack system, the kernel stack is required for the idle thread and each
application thread. Meanwhile, the single kernel stack system uses only 76 bytes of
RAM for the kernel stack independent of the number of application threads. The more
threads that are created, the more significant the expected stack efficiency on the this
system. Our results also show that the stack reservation overhead on the threaded
system is trivial. Most of sensor application threads require a little stack size. Sensing
and Pingpong applications, for instance, can be implemented with 18 and 8 bytes of
user stack, respectively.

 As described in Section 2.2, we have developed a stack-size analysis technique.
For the seven sensor applications, the estimated maximum stack size was compared
with the worst stack depth via simulation. The sensor application does not use an
indirectly addressed function call, so the technique successfully analyzes each
program’s stack size. The results of the proposed technique were equal to 1 or 2
words more than the results of simulation, and the technique gave the same call graph
with the program’s control flow, which was determined manually. We also tested this
technique on a program which uses indirect function calls. For this program, the
technique could not produce a call graph. However, the stack overflow of an
application with an immediate stack size was detected in run-time, indicating that the
system safety was maintained.

3.2 Effect of Variable Timer

We have implemented two versions of the system using the variable and periodic
timer techniques. Since the major difference in the energy consumption between the
two systems is the amount of CPU usage, we measured the active CPU time to
estimate the energy consumption. Figure 3(a) shows the performance efficiency of the
variable timer compared to the periodic timer. One tick in the variable timer is 1ms,
and 10ms on the periodic timer. The experimental results include the execution time
of a timer interrupt handler and a timer reprogramming routine. The effectiveness of
variable timer differs from the execution cycle of applications. MPT_mobile, R_send,
Sensing, Pingpong, and Surge are periodic programs and are executed every 300ms,
100ms, 1000ms, 1500ms, and 2048ms, respectively. R_send is the most energy
consuming program among the seven benchmark applications. Because R_send
transmits a radio packet every 100ms and performs ACK and the timeout-based
packet retransmission, it creates more frequent timer requests than other applications.
MPT_backbone and R_recv are reactive applications, which are only executed with
radio packet reception. Pingpong and Surge have a relatively slow execution period.
Therefore, these applications get significant energy reduction on the variable timer
based system.

In order to clearly compare the performance of variable timer and the periodic
timer by the timer request interval, we measured the overhead of the timer
management routine. The blink application was used for the evaluation by adjusting
the period from 20ms to 1000ms. Figure 3(b) shows the results of this evaluation.
When the timer request interval is long, variable timer system spends definitively less
overhead than the periodic timer system. However, as the timer interval increases, the
overhead on the variable timer becomes larger. At the 20ms of interval, two systems

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 H. Kim and H. Cha

(a) benchmark applications

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

MPT_backbone

MPT_mobile

R_send
R_recv

Sensin
g

Pingpong
Surge

cy
cl

es
/s

ec

variable timer

periodic timer

(b) varying interval of b link

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1000ms 500ms 250ms 125ms 64ms 32ms 20ms

cy
cl

es
/s

ec

variable timer

periodic timer

Fig. 3. Timer management overhead

have almost the same overhead because the variable timer takes a longer time per
each timer request than the periodic timer, due to the time required to determine the
next upcoming timeout event and reprogram the system timer. In this experiment, the
periodic timer system has a 10ms tick. If the periodic timer system is implemented to
use a 1ms tick as with the variable timer, more overhead would be required to handle
timer interrupts.

3.3 Effect of Event-Boosting Scheduling Policy

This section shows that the event-boosting scheduler can effectively satisfy sensor
applications’ event requests. The test application is a packet round-trip program which
continuously sends and receives a packet between two nodes. The first node sends a
packet out while the second node receives and returns it to the first node. The first node
waits for a reply from the second node and then repeats this process. The round-trip
application runs with only two nodes, so that the influence of radio channel and back-
off time of the MAC is minimized. The response time for the thread to handle a packet
depends on the number of other threads in the system and the scheduling policy.
Hence, we can evaluate the functionality of a thread scheduler with radio throughput of
the application. The other threads in our experiment are designed to add loads to the
scheduler, and perform 10ms of computation each at 100ms intervals.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 303

50

60

70

80

90

100

110

0 1 2 3 4 5

Num. of other thread

R
ou

nd
 tr

ip
s

/ s
ec

SCHED_RR(fixed priority)
SCHED_OTHER(round robin)
SCHED_OTHER(event-boost)

Fig. 4. Scheduling policy comparison

Figure 4 represents the number of round-trips per minute according to the
scheduling policy. If users are not concerned with adjusting scheduling policy,
SCHED_OTHER is the default policy for threads. In the case of implementing
SCHED_OTHER as a simple round-robin, the number of round-trips decreases
according to the increment of the other threads. Because preemption is not performed
when other threads do not finish their execution or exhaust their time quantum, the
radio packet handling is delayed. In the case of explicitly configuration of the round-
trip thread as SCHED_RR, the application, which has always higher priority than
others, maintains a fixed round-trip performance independent of the number of other
threads. The performance of the system, which uses the proposed event-boosting
technique for SCHED_OTHER threads, is nearly the same as the case of
SCHED_RR. Although users do not manually configure the priority of threads, the
dynamic priority adjustment of the event-boosting scheduler minimizes the event
handling delay of sensor application threads.

 3.4 RETOS vs. TinyOS

This section compares the multithreaded operating system RETOS with the event-
driven TinyOS by developing a sensor application. TinyOS is a component-based
operating system, and has no distinction between the kernel and the application.
Components are programmed with event-driven model and compiled to a single
binary image. RETOS provides a rich development environment with preemptive
threads. The proposed thread optimization reduces the overhead of traditional
multithreading and increases thread response time. We used RETOS v0.96 and
TinyOS v1.1.13 for this experiment, and the applications used in the experiment are
MPT and a simple packet transmission. MPT is a mobile object tracking program [15]
based on ultrasound localization technique. MPT consists of mobile node and
backbone node, and the mobile node computes its location using trilateration every
300ms. The trilateration takes approximately 16ms to determine the location. We
have considered inserting a simple code which periodically sends and receives a radio

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 H. Kim and H. Cha

Fig. 5. Packet handling delay

packet to the above application. The sink node transfers a packet every 100ms, and
the mobile node receives and counts it. We measured the time from the FIFOP
interrupt handling at the CC2420 radio driver to the packet at the thread.

Figure 5 shows the packet-handling latency on RETOS and TinyOS. The purpose
of this experiment was to understand the dependency of MPT execution time and
packet handling. The results were measured after the two applications’ start time was
synchronized. With the RETOS system, the packet-handling latency was almost the
same whether or not MPT was run, because application threads are preemptive and a
packet was received by the radio device driver located in the kernel. In the case of the
TinyOS system, the packet-handling latency without MPT was slightly shorter than
RETOS. With MPT, the latency was considerably longer than in the other three cases.
The extended latency was caused by long computation time of trilateration in the
MPT application, which can delay the packet-handler task’s execution on the TinyOS.

Fig. 6. Execution time of MPT Trilateration observed by oscilloscope

Figure 6 shows the execution pattern of trilateration as observed by oscilloscope.
Trilateration was performed every 300ms and took approximately 16ms. We tried to
reduce the delay by splitting the trilateration into several phases, but this made the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 305

Table 5. Code size for MPT application

TinyOS
(bytes)

RETOS Kernel
(bytes)

RETOS Lib.
+ App. (bytes)

RETOS Total
(bytes)

 ROM RAM ROM RAM ROM RAM ROM RAM
MPT

Backbone
12614 467 18314 748 492 143 18806 891

MPT
Mobile

17222 701 18314 748 6848 434 25162 1182

program control flow complex and rendered it difficult to manage the increased
number of states. Moreover, measurement of the execution time of each code fragment
was necessary to determine whether the split provided reasonable performance.

As RETOS is a multithreaded operating system, it is considered to have more time
and space overhead than the event-driven TinyOS. Table 5 shows the code size of
MPT on RETOS and TinyOS. The RETOS system uses less than 30Kbytes of flash
memory and 2Kbytes of RAM. Although the code size of RETOS is bigger than that
of TinyOS, RETOS supports functionality such as application safety mechanism [9],
dynamic loadable module [10] and the network stack [11], which are barely supported
by the native TinyOS system.

Figure 7(a) compares the computational overhead of MPT with RETOS and TinyOS.
MPT_mobile spends 2% more overhead with RETOS; it performs thread preemption
and scheduling, and also dynamic code checking for system safety. Figure 7(b) shows

(a) System overhead

679200

691491

0 100000 200000 300000 400000 500000 600000 700000 800000

TinyOS

RETOS

cycles/sec

(b) RETOS Overhead analysis

Kernel
42.42%

Scheduler
34.2% (0.93%)

Mode switching
9.5% (0.26%)

Context witching
13.6% (0.37%)

App code checking
42.7% (1.16%)User thread

54.86%

Etc
2.72%

Fig. 7. Computational overhead

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 H. Kim and H. Cha

the CPU usage distribution of the RETOS system. The user thread occupies 55% of
total processing time. The kernel portion is approximately 42% due to the frequent
use of radio communication. On the other hand, the amount of calculation time caused
by mode switching, scheduler execution and context switching is trivial, compared
with the entire processing time. The portion of context switching, mode switching and
scheduler execution overhead may be bigger when an application requires little radio
communication or computations. Nevertheless, the experiment results show that
multithreading could be implemented with reasonable overhead on current sensor
node hardware.

4 Related Work

TinyOS [1], the industry defacto sensor network operating system, is based on an
event-driven model and provides nesC [16] programming language. TinyOS is
considered to provide high concurrency without thread stack reservation, which is
essential to multithreading. SOS [2] provides dynamically loadable modules and
adopts an event-driven model to avoid context switching overhead for multithreading.
However, event-driven models can be inconvenient when developing applications. As
event handlers are run to completion, programmers must split long-lived tasks into
several phases of codes for concurrency. The tasks of the event-model cannot be
blocked, hence a single conceptual function with an I/O operation should be divided
into two separate sub functions, one for before and the other for after the I/O
operation. The stack frame in the split function is manually maintained by
programmers, and it increases the use of global variables. These issues of event-
driven model induce poor software structure and render it difficult to debug and
develop applications [6, 17].

MANTIS [8] provides a multithreaded programming model, which implement
traditional multithreading in sensor nodes. The system shows that programming long-
running tasks is much easier than in an event-driven model. With the MANTIS
system, programmers heuristically assign a stack size to each thread. If the stack size
is too big, the system will suffer from memory insufficiency. If the stack is too small,
stack may overflow and system will fail. In MANTIS, fixed priority scheduling based
on round-robin is not able to fully utilize the advantage of preemption without the
programmer making a manual priority adjustment. As the MANTIS scheduler is
executed every 10ms, the overhead for context switching and timer interrupt handling
is not trivial. Contiki [7] provides a thread library that works on the event-driven
system. With Contiki, programmers empirically choose an appropriate programming
model among event-driven, protothread [18], and multithread libraries to develop an
application. Hybrid approaches have been studied to integrate the merits of an event
model and thread-based model. Adya et al. [17] suggest the combined usage of event
and thread model in the same program, but this requires programmers to thoroughly
understand the differences between the two models and to appropriately choose the
alternatives. Protothread [18] does not require stack reservation; however it cannot
maintain local variables and can block only in an explicitly declared area.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Multithreading Optimization Techniques for Sensor Network Operating Systems 307

5 Conclusion

In this paper, we described multithreading optimization techniques for sensor
applications development. Our techniques contribute to possible solutions toward
three major problems involved in the implementation of threaded operating systems
on resource-constraint sensor nodes—memory resource, energy consumption, and
scheduling policy. Single kernel stack and stack-size analysis techniques reduce the
memory requirement of a thread model. Variable timer achieves power reduction by
improving the timer management scheme. Event-boosting scheduling policy reflects
the characteristics of sensor applications and provides fast response time of threads
without explicit priority configuration. With the proposed techniques, the overhead of
multithreading is reported to be approximately 2% of the total execution time on the
TI MSP430 processor, and the system guarantees minimal response delay to sensor
applications.

Application libraries or system calls are being implemented, and extensive testing
is also conducted on the RETOS sensor operating system. We are presently improving
the performance and the energy efficiency of the network stack for radio
communication on RETOS, as well as implementing device drivers for diverse
sensors and porting them to other processors.

Acknowledgements

This work was supported by the National Research Laboratory (NRL) program of the
Korea Science and Engineering Foundation (2005-01352), and the MIC(Ministry of
Information and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Information
Technology Advancement) (IITA-2006-C1090-0603-0015).

References

1. Hill, J., Szewczyk, R., Woo, A, Hollar, S., Culler, D., and Pister, K.: System architecture
directions for network sensors. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Cambridge, MA, 2000.

2. Han, C. C., Rengaswamy, R. K., Shea, R., Kohler, E., and Srivastava, M.: SOS: A
dynamic operating system for sensor networks. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services (Mobisys), Seattle, WA, 2005.

3. Li, S.-F., Sutton, R., and Rabaey, J.: Low Power Operating System for Heterogeneous
Wireless Communication Systems. In Proceedings of the Workshop on Compilers and
Operating Systems for Low Power, Barcelona, Spain, 2001.

4. Regehr, J., Reid, A., Webb, K., Parker, M., and Lepreau, J.: Evolving real-time systems
using hierarchical scheduling and concurrency analysis. In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS), Cancun, Mexico, 2003.

5. Ousterhout, J. K.: Why threads are a bad idea (for most purposes). Invited Talk at the 1996
USENIX Technical Conference, 1996.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

308 H. Kim and H. Cha

6. Behren, R., Condit, J., and Brewer, E.: Why events are a bad idea (for high-concurrency
servers). In Proceedings of the 9th Workshop on Hot Topics in Operating Systems
(HotOS), Lihue, Hawaii, 2003.

7. Dunkels, A., Grönvall, B., and Voigt, T.: Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensors. In Proceedings of the 1st IEEE Workshop on
Embedded Networked Sensors (EmNetS), Tampa, Florida, 2004.

8. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C.,
Torgerson, A., and Han, R.: MANTIS OS: An Embedded Multithreaded Operating System
for Wireless Micro Sensor Platforms. ACM/Kluwer Mobile Networks & Applications,
Special Issue on Wireless Sensor Networks, vol.10, no.4, 2005.

9. Kim, H., and Cha, H.: Towards a Resilient Operating System for Wireless Sensor
Networks. In Proceedings of the 2006 USENIX Annual Technical Conference, Boston,
MA, 2006.

10. Shin, H., and Cha, H.: Supporting Application-Oriented Kernel Functionality for Resource
Constrained Wireless Sensor Nodes. In Proceedings of the 2nd International Conference
on Mobile Ad-hoc and Sensor Networks, Hong Kong, China, 2006.

11. Choi, S., and Cha, H.: Application-Centric Networking Framework for Wireless Sensor
Nodes. In Proceedings of the 3rd Annual International Conference on Mobile and
Ubiquitous Systems: Networks and Services, San Jose, CA, 2006.

12. Regehr, J., Reid, A., and Webb, K.: Eliminating stack overflow by abstract interpretation.
In Proceedings of the 3rd International Conference on Embedded Software, Philadelphia,
PA, 2003.

13. Brylow, D., Damgaard, N., and Palsberg, J.: Static checking of interrupt-driven software.
In Proceedings of the 23rd International Conference on Software Engineering, Toronto,
Canada, 2001.

14. Tmote Sky. http://www.moteiv.com.
15. Yi, S., and Cha, H.: Active Tracking System using IEEE 802.15.4-based Ultrasonic Sensor

Devices. In Proceedings of the 2nd International Workshop on RFID and Ubiquitous
Sensor Networks, Seoul, Korea, 2006.

16. Gay, D., Levis, P., Behren, R., Welsh, M., Brewer, E., and Culler, D.: The nesC Language:
A Holistic Approach to Network Embedded Systems. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, 2003.

17. Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and Douceur, J. R.: Cooperative Task
Management Without Manual Stack Management. In Proceedings of the 2002 USENIX
Annual Technical Conference, Monterey, CA, 2002.

18. Dunkels, A., Schmidt, O., and Voigt, T.: Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded Systems. In Proceedings of the 4th
ACM Conference on Embedded Networked Sensor Systems (Sensys), Boulder, Colorado,
2006.

19. POSIX 1003.1B. http://www.unix.org/version3

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 309 – 324, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Empirical Study of Antenna Characteristics Toward
RF-Based Localization for IEEE 802.15.4 Sensor Nodes

Sungwon Yang and Hojung Cha

Department of Computer Science, Yonsei University,
Seodaemun-gu, Sinchon-dong 134, Seoul 120-749, Korea

{swyang, hjcha}@cs.yonsei.ac.kr

Abstract. Localization using the characteristics of the Radio Frequency (RF) in
wireless sensor networks is attractive because the method does not require addi-
tional measuring devices, and hence satisfies low cost and low power consump-
tion needs. The range information derived from Received Signal Strength
(RSS), which attenuates over the distance and node connectivity, is, however,
inaccurate and unpredictable in the real world due to problems caused by sensor
motes and the environment of the sensor field. In this paper, through an empiri-
cal analysis, we present detailed radio signal properties of the 2.4GHz IEEE
802.15.4 radio module. We also provide the methodology of antenna design and
mounting to alleviate the antenna orientation and RSS fluctuation problems,
which are key factors that make RF-based ranging irregular in an obstacle-free
environment. Our work is differentiated from previous work, which concludes
with merely revealing the problems, ignoring them by assumptions, or even
limiting the feasibility of RF utilization in localization.

1 Introduction

Although localization for Wireless Sensor Networks (WSN) has actively been studied
in recent years, it is still a challenging issue. One of the simple methods for localiza-
tion is to use a Global Positioning System (GPS) [1]. However, while GPS enables
localization in an outdoor environment, it is costly and the energy consumption is
significant. Using Received Signal Strength (RSS), or connectivity of radio commu-
nication, for localization in WSNs is attractive because of its low cost and low power
consumption, and because it does not require any additional measuring devices other
than the low-power radio module itself. Recently many RF-based localization algo-
rithms have been proposed [2], [3], [4], [5], [6], [7], [8], [9]. These localization tech-
niques, using the RSS or RF connectivity, theoretically work well in ideal conditions;
however, in the real world the location error is too high to be useful in most cases.
Therefore, the discrepancy of localization result between theoretical and practical
conditions generates the belief that RF-based localization is useless. The main reason
for the discrepancy is that most localization algorithms based on RSS or RF connec-
tivity assume that the radio radiation pattern is perfectly circular or spherical in shape,
and that the formula for RSS attenuation over distance is directly applicable. In the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 S. Yang and H. Cha

real world, the pattern of radio transmitted at the antenna is neither a circular nor a
spherical shape, and the path loss model is not valid due to problems caused by the
sensor mote and the environment of the sensor field. The study in [10] shows that the
performance of RF-based localization degrades in the presence of an irregular radio
range.

In this paper, we consider antenna orientation and the fluctuation of RSS as the
major problems that make RF-based ranging inaccurate and unpredictable in an ob-
stacle-free environment. Through extensive measurements, we analyze the cause of
each problem and propose a methodology that eliminates the limits of RF-based local-
ization in an obstacle-free environment. Instead of making the RF-based localization
algorithm more complicated by combining with an error correction algorithm, which
increases power consumption, we focus on antenna technology to solve these prob-
lems at the base level. To the best of our knowledge, our work is the first approach
that shows that the irregularity of RF is not an inherent problem in WSN, and the RF
irregularity can be eliminated with antenna design or mounting mechanisms. The
experimental results with the various antennas clearly show the feasibility of a more
accurate RF-based localization for WSN in practice.

The rest of the paper is organized as follows. Section 2 describes previous work
that discusses RF irregularity. The empirical analyses of two main factors that make
RF-based ranging inaccurate and the methodology for eliminating the RF irregularity
with various antennas are presented in Sections 3 and 4. In Section 5, we analyze a
critical consideration when deploying nodes with special antennas. In Section 6, we
discuss an ideal antenna design for accurate RF-based ranging. Finally, we conclude
the paper in Section 7.

2 Related Work

Early research, [11], [12], [13] mentioned link asymmetry and irregular radio range in
WSNs. These phenomena were shown because of experiments to quantify the per-
formance of packet delivery with the Berkeley Mica or Mica2 motes. They hypothe-
sized that the irregularity of radio communication in WSNs was caused by differences
in the quality of radio and hardware calibrations.

Zhou et al. [14] categorized the causes of radio irregularity into two main factors:
the heterogeneous properties of devices and the non-isotropic properties of propaga-
tion media. Device properties include the antenna type (directional or ommi-
directional), transmission power, antenna gains, receiver sensitivity, receiver thresh-
old and the Signal-Noise Ratio (SNR). Media properties include the media type,
background noise and various other environmental factors. They concluded that an
asymmetric link is mainly caused by the variance in RF transmission power and the
differences in path loss as a function of direction of propagation. However, the reason
for an asymmetric link between two nodes that have the same transmitting power in
an obstacle-free environment was not discussed in their work. They regarded the radio

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 311

irregularity in WSNs as an inherent problem and consequently proposed the Radio
Irregularity Model (RIM) to apply the radio irregularity to simulations.

Recently, Lymberopoulos et al. [15] provided a detailed analysis of radio proper-
ties of 2.4GHz RF using the IEEE 802.15.4 radio module and a monopole antenna.
They used the CC2420 [16] radio module to characterize the properties of RSS and
link asymmetry in obstacle-free and indoor environments. Through extensive meas-
urements, they showed that antenna orientation greatly affects RSS and link asymme-
try in indoor and outdoor scenarios, and confirmed the presence of antenna orientation
and irregular RSS attenuation problems in practice. However, a method to solve these
problems was not considered in their work.

3 Antenna Orientation

Many techniques, which determine the location of an unknown node using RF, have
been proposed. Most of them, however, assume ideal conditions, where the pattern of
horizontal radiation is circular and the radio range is the same for each node. How-
ever, because of the presence of antenna orientation problems inherent in a real world
environment, these localization algorithms only work where the assumptions hold.
Antenna orientation is a problem defined as the RSS of the receiver varies as the pair
wise antenna orientations of the transmitter and the receiver are changed. In this sec-
tion, we analyze the cause of antenna orientation problems in WSNs, and provide
solutions based on antenna characteristics. We also provide data on how the link
property improves between two nodes in conditions where an antenna orientation
problem does not exist.

3.1 Cause of Antenna Orientation

Most off-the-shelf sensor motes use a ¼ wavelength monopole antenna, which is
mounted in either an internal or external type configuration. A ¼ wavelength mono-
pole antenna shows the same radiation pattern of a ½ wavelength dipole antenna
whose horizontal radiation pattern is omni-directional. However, this omni-directional
radiation pattern is distorted when an antenna is mounted on sensor motes. An irregu-
lar radiation pattern means that the measured RSS may vary according to the orienta-
tion of the transmitting and receiving nodes, although both the transmitter and the
receiver are located in a fixed position. To quantify the distorted radiation pattern, we
measured average RSS values in 24 different degrees with a fixed receiver node and a
rotating transmitter node at a 1.5m distance and output power of -10dBm using
“Tmote Sky1” [17] in a relatively obstacle-free environment (No obstacles making
reflections within three meters).

As shown in Figure 1(a), the radiation pattern of the internal antenna is so jag-
ged that the difference in the measured RSS is up to 20dBm, which is impossible
for use in obtaining propitious distance information for localization. In the case of

1 All experiments using real sensor motes in this paper were conducted with “Tmote Sky” from

the Moteiv cooperation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 S. Yang and H. Cha

¼ wavelength external monopole antenna, the radiation pattern is still biased and
the maximum difference of RSS is 15dBm, as shown in Figure 1(b), although the
pattern is more circular compared to the internal antenna case.

One of the main factors that cause the antenna orientation phenomenon is the small
size of the ground plane inside the PCB (Printed Circuit Board). The widely-used ¼
wavelength monopole antenna is formed by replacing one half of a dipole antenna
with a ground plane at right-angles to the remaining half. If the ground plane is large
enough, the monopole behaves exactly like a dipole, as if its reflection in the ground
plane formed the missing half of the dipole. The ground plane of a sensor mote, how-
ever, may not satisfy the ideal ground conditions. Another factor, which affects the
radiation pattern, is the circuit design and devices on a sensor mote. In other words,
the electric field of the antenna is distorted by the interference from other devices,
which are close to it.

 (a) (b)

Fig. 1. Horizontal radiation patterns of (a) internal inverted-F ¼ wavelength antenna and (b)
external ¼ wavelength monopole antenna mounted on a sensor mote

3.2 Length of Antenna

To validate whether the antenna orientation problem is indeed caused by interference
from electric devices on a sensor mote, we kept the distance between the antenna and
the sensor mote to a wavelength height (12.5cm at 2.4GHz) using a coaxial cable
whose impedance is 50Ω. Since the vertical angle of radiation gets narrower as the
length of the antenna gets longer from ¼ wavelength to ½ or ⅝wavelength [18], we
also changed the length of the antenna to ½ and ⅝wavelengths. Three antennas of
different lengths both with and without a coaxial cable are shown in Figure 2. Figure
3(a) shows the measured vertical radiation patterns for each antenna, which shows the
longer antenna has narrower angle of vertical radiation. Measurements were con-
ducted in the anechoic chamber, as shown in Figure 3(b), which does not generate a
reflection of electromagnetic waves, and a device which takes a measurement of RSS
from the antennas in every single degree used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 313

 (a) (b)

Fig. 2. (a) ¼, ½, and ⅝wavelength monopole antennas with and without a coaxial cable. The
area designated by the dotted-line indicates a wavelength coaxial cable. (b) A sensor mote with
an external antenna.

(a) (b)

Fig. 3. (a) Radiation patterns of ¼, ½, and ⅝wavelength monopole antenna on side view. (b)
Picture of the anechoic chamber where the measurements of radiation pattern were conducted.

Figure 4(a) shows that the null radiation zone, where a radically weaker radiation
than in other areas occurs, is eliminated when the ¼ wavelength optimal antenna is
mounted a wavelength height farther from a sensor mote. With a ½ wavelength mono-
pole antenna, we obtained more circular radiation patterns, especially when the an-
tenna was a wavelength away from the mote. In case of a ⅝wavelength antenna, it
shows an almost perfect circular radiation pattern although it is mounted without a
coaxial cable. Note that the radiation pattern gets more circular with a ½ or
⅝wavelength monopole antenna, however the RSS gets weaker when compared to a ¼
wavelength antenna.

As shown in Figure 4, the antenna orientation problem can be eliminated with a ½
wavelength monopole antenna, which keeps a wavelength distance away from a sen-
sor mote or a ⅝wave length one. In other words, the antenna orientation problem can
be solved by minimizing the electrical interference from devices of a sensor mote and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

314 S. Yang and H. Cha

matching the ground plane with the proper length of antenna. The horizontally omni-
directional radiation pattern is obtained by simply keeping enough distance between
an antenna and a sensor mote or changing the antenna to a longer one. In practice,
however, the distance between an antenna and a sensor mote cannot be as far away as
is theoretically needed.

Using a ½ or ⅝wavelength antenna is also inefficient because as the length of an
antenna deviates from the optimal length, the antenna does not resonate at the given
frequency. Figure 5 shows the resonant point, measured with a network analyzer, of
three monopole antennas whose length is ¼, ½, and ⅝wavelength of 2.4GHz respec-
tively. In Figure 5(a), the ¼ wavelength monopole antenna causes maximum reso-
nance at the frequency of 2.4GHz, however, ½ and ⅝ones do not. The attenuation of
RSS, which is caused by changing the antenna length from an optimal ¼ wavelength
to others, is about 10dBm as shown in Figure 4. An antenna whose length does not
match the given frequency receives weak signals, and consequently shortens the
communication range. To solve this problem, an antenna that has an analogous radia-
tion pattern to ½ or ⅝wavelength antenna without attenuation of RSS is required.

(a) (b) (c)

Fig. 4. The horizontal radiation patterns of (a) ¼ wavelength, (b) ½ wavelength, and (c)
⅝wavelength antenna mounted on a sensor mote. Measurements were conducted at a 1.5m
distance between two motes and output power of -10dBm. Both the transmitter and receiver
used exactly the same length of antenna.

(a) (b) (c)

Fig. 5. Return loss of (a) ¼ wavelength, (b) ½ wavelength, and (c) ⅝ wavelength monopole
antenna. The minimum peak indicates the return loss at maximum resonant frequency.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 315

(a) (b) (c)

Fig. 6. (a) Configuration of collinear monopole antenna with loading coil, (b) Designed collin-
ear monopole antenna. The area designated by the dotted-line indicates a wavelength coaxial
cable, and (c) Vertical radiation pattern of the designed CMPA. Measurements of the vertical
radiation pattern were conducted in an anechoic chamber.

0°

45°

90°

135°

180°

225°

270°

315°

No Apartness

A wavelength
Aparted

(a) (b)

Fig. 7. (a) Return loss of designed CMPA. The minimum peak indicates the return loss at
maximum resonant frequency. (b) Horizontal radiation pattern of the designed CMPA
mounted on a sensor mote. Measurements were conducted at a 1.5m distance between two
motes and an output power of -10dBm. Both the transmitter and receiver used exactly the same
length of antenna.

3.3 Collinear Monopole Antenna

Since in spite of satisfying the regular radiation pattern, the longer than optimal length
of antenna does not satisfy the normal communication range, we are required to find
an antenna guaranteeing both a regular radiation pattern and no decrease in communi-
cation range.

The Collinear MonoPole Antenna (CMPA) is used to obtain a higher performance
level [19]. It is composed of two linear wires connected with a loading coil and it has
a narrower vertical radiation pattern than a ¼ wavelength default antenna. Figure 6(a)
shows the configuration of a CMPA with a loading coil and Figure 6(b) shows the
CMPA we have built where the length of the first antenna element LF is 2.8cm, the
length of the second antenna element LS is 6cm, the uncoiled length of the coil arm LC
is 5.6cm, and the coil diameter DC is 0.7cm. Figure 6(c) presents the measured verti-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 S. Yang and H. Cha

cal radiation pattern of our CMPA, which is narrower than a ¼ wavelength optimal
monopole antenna. The resonant frequency of our CMPA is around 2.4GHz as shown
in Figure 7(a). Figure 7(b) shows that the CMPA guarantees the omni-directional
radiation pattern horizontally and the higher RSS than the case of measurement with
not only ½ or ⅝wavelength monopole antenna but also a ¼ wavelength optimal one.

3.4 Asymmetric Link

Through the various experiments, we have discovered why the antenna orientation
problem occurs and subsequently provided solutions through antenna design and
mount methods. In this section, we show the improvement of link symmetry
through antenna replacement. An asymmetric link is defined as one in which the
connectivity of “node A” to “node B” is significantly different from that of “node
B” to “node A” on condition that the transmission power of node A and B is the
same. The link asymmetry is caused by factors such as the presence of obstacles,
the asymmetric multi-path effect, and the antenna orientation. Since we consider the
obstacle-free environment, we focus on the asymmetric link problem caused by
antenna orientation.

The asymmetric link has been regarded as an inherent problem in WSNs. However,
for accurate localization in both range-free and range-based techniques; it is essential
that this issue be resolved. Figure 8 shows that the asymmetric link of the RSS prob-
lem can be eliminated by solving the antenna orientation problem. With a ¼ wave-
length monopole antenna, which has the horizontally irregular radiation pattern, the
maximum deference of RSS from “node A” to “node B” and from “node B” to “node
A” is 15dBm as shown in Figure 8(a). Conversely, the maximum difference of RSS
between two links is only 1.7dBm, as shown in Figure 8(b), for nodes with a
⅝wavelength monopole antenna, which transmits almost the same strength of radio
signal to all horizontal directions. Consequently, the asymmetric link problem in
WSNs is not an independent issue, but a problem that is dependent on the antenna
orientation problem.

(a) (b)

Fig. 8. Average RSS vs. distance plot for (a) ¼ wavelength monopole antenna and (b)
⅝wavelength monopole antenna. Nodes were placed with random orientation for each meas-
urement. All measurements were conducted with a transmission power of -7dBm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 317

From the viewpoint of link connectivity, link symmetry, which is the most impor-
tant factor in many range-free localization methods, can also be guaranteed with a
horizontally omni-directional antenna. Srinivasan et al. [20] presented the relationship
between RSS and Packet Reception Rate (PRR), which shows that PRR varies rather
radically where RSS is less than -87dBm. Figure 9 shows the similar result, which is
re-experimented. As shown in Figure 8(a), the difference in RSS is up to 15dBm
where the antenna of sensor motes is ¼ wavelength monopole whose horizontal radia-
tion pattern is irregular. Hence, a node may receive all packets or nothing according
to the directions of the nodes in the case where the average RSS value is close to
-87dBm, which is an entrance of a gray region. Conversely, an antenna that guaran-
tees the horizontally omni-directional radiation pattern satisfies a certain level of PRR
although the average RSS value is near -87dBm.

Fig. 9. RSS vs. Packet Reception Rate plot. 150 measurement cases were randomly picked
where the distance between a transmitter and a receiver is 50 to 2000cm and the transmission
power is -25 to 0dBm.

4 RSS Fluctuation

Theoretically, RSS attenuates over distance in free space. However, this is not valid in
practice due to multi-path fading. In the real environment, RSS attenuates by a certain
distance, and then starts fluctuating. This fluctuation leads to unreliable distance in-
formation because the same RSS can be measured at different distances. In this sec-
tion, we validate that the distance guaranteeing RSS attenuation without fluctuation
can be extended through antenna replacement. Based on an experiment using para-
bolic antennas, we also provide insight on how the accuracy of range-based ranging
improves under the circumstance such that the cause of RSS fluctuation is eliminated
through a special antenna.

4.1 Ground Reflection

Figure 10 shows the RSS values versus distance for five different output power levels.
The measured RSS attenuates almost linearly by the distance dR as shown. Here, dR is a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 S. Yang and H. Cha

distance that guarantees the validity of the path loss model so that mapping RSS to
distance information for localization can be possible within dR. However, beyond this
reliable distance, RSS begins fluctuating. Note that the RSS starts fluctuation at the
same distance for all cases of different output power, and each peak for different output
power after the distance of dR is generated at the same distance. This implies that the
output power of the transmitter is not a factor that affects dR. Since the object, which
generates multi-path fading, is only the ground in an obstacle-free environment, the
ground reflection is the main factor which generates the RSS fluctuation problem.

Fig. 10. RSS vs. distance for five different output powers on soil ground. Measurements were
conducted with ¼ wavelength optimal monopole antennas. The top of the antenna was at 20cm
height. -95dBm of RSS value indicates no communication between receiver and transmitter.

Fig. 11. RSS vs. distance for five different output powers on soil ground. Measurements were
conducted with the designed CMPA. The top of the antennas was at 20cm height. -95dBm of
RSS value indicates no communication between receiver and transmitter.

Since dR depends on where the first reflection by ground occurs, extending the
distance of the first reflection is required to extend dR for obtaining useful distance in-
formation at a longer distance. We changed the antenna from an optimal ¼ wavelength

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 319

monopole to CMPA in Figure 6(b) to extend dR. The vertical radiation pattern of de-
signed CMPA is narrower than an optimal ¼ wavelength monopole antenna as shown in
Figure 6(c). Therefore, the angle of incidence of CMPA is narrower than a ¼ wave-
length one. Since the narrower angle of incidence means that the reflection on the
ground occurs at a greater distance and the reflected RF also interferes with directly-
propagated RF at a further distance, dR is extended.

Figure 11 shows the RSS values versus that of distance with CMPA. Compared
with a ¼ wavelength monopole antenna, the distance that guarantees obtaining
useful distance information directly from RSS is extended from 8m to 14m. Note
that we adjusted the top of both antennas to the same height to minimize the side-
effect caused by different antenna heights. The adjustment of antenna height was
essential because the difference of ¼ wavelength monopole and the designed
CMPA is about 7cm.

4.2 Experiment Using Parabolic Antennas

In the previous section, we validated that the distance, which guarantees the path loss
model can be extended by changing into an antenna whose vertical radiation angle is
narrower than the case of a ¼ wavelength optimal antenna. We now focus on how
long dR can be extended under the environmental conditions where the ground reflec-
tion does not exist. To measure RSS value over a distance satisfying the condition of
no ground reflection, we used a parabolic antenna [21], which has a very sharp radia-
tion pattern in both the horizontal and vertical planes.

We placed two sensor motes in an obstacle-free space, connecting them with para-
bolic antennas whose gain is 15dBi, and satisfying the line-of-sight as shown in Fig-
ure 12. The parabolic antenna transmits a radio signal to an extremely narrow direc-
tion so that the reflection of RF caused by ground almost never occurs. As shown in
Figure 13, in the condition where there is no ground reflection, RSS attenuates line-
arly over distance without fluctuation. In an obstacle-free environment where the
ground reflection is removed by using an antenna whose radio signal is not radiated to
the ground, the reliable distance dR can be extended to the communication range itself.
In case of our experiment with the parabolic antenna of 15dBi gain, the reliable dis-
tance was over 50m.

Fig. 12. An experimental setup for RSS measurement with parabolic antennas. The transmis-
sion power is 0dBm and the line of sight is satisfied at a height of 50cm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

320 S. Yang and H. Cha

50 30
0

55
0

80
0
10

50
13

00
15

50
18

00
20

50
23

00
25

50
28

00
30

50
33

00
35

50
38

00
40

50
43

00
45

50
48

00

Fig. 13. RSS vs. Distance with parabolic antennas of 15dBi gain at a height of 50cm

Through this experiment, we noticed that remarkably accurate performance of lo-
calization can be achieved even with RSS-based localization techniques, which trans-
late RSS to actual distance between nodes, provided that an antenna, which eliminates
the RSS fluctuation problem is used.

5 Deployment Consideration

So far, we have validated that both antenna orientation and RSS fluctuation problems
can be alleviated by changing the antenna into one whose vertical radiation pattern is
less than a ¼ wavelength optimal antenna. Experimental results in a relatively flat and
obstacle-free environment show better performance in terms of regular radiation pat-
tern and obtaining a longer distance range which is applicable to the path loss model.
The problem which is occurred when changing an antenna from a ¼ wavelength opti-
mal one to an antenna with a narrower angle of vertical radiation, is that the RSS
attenuation over distance is less reliable than the case of using a ¼ wavelength optimal
monopole antenna in the environment where the heights of a transmitter and a re-
ceiver are different.

In order to analyze how the comparatively narrower vertical radiation than ¼ wave-
length monopole antenna affects the localization performance in an environment
where a height difference exists, we measured RSS over distance with different
heights between a receiver and a transmitter. Figure 14 shows RSS values versus
distance for four cases. The height differences of the transmitter and the receiver are
0cm, 40cm, 80cm, and 120cm respectively. In the case of a ¼ wavelength monopole
antenna, the path loss model was valid for the height difference of 0cm, 40cm, and
80cm. For the height difference of 120cm, the measured RSS value at a 2m distance
was weaker than the RSS value at a 4m distance. However, the difference of the RSS
value was slight for 2dBm.

In the case of our CMPA, the path loss model was slightly broken at a height dif-
ference of 80cm, and the RSS difference between 2m distance and 4m distance was

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 321

10dBm at a height difference of 120cm as shown in Figure 14(b). To identify the
height difference, which guarantees the path loss model, we measured RSS at the
distance of 2m between a transmitter and a receiver by changing the height difference
from 0 to 120cm. As shown in Figure 15, for a ¼ wavelength optimal antenna, the
RSS value decreases dramatically at a height difference of 90cm. On the other hand,
the RSS value starts dramatically decreasing at a height difference of 70cm for the
CMPA. The vertical boundary which guarantees the path loss model can be repre-
sented about 24.5° for a ¼ wavelength monopole antenna and about 19.5° for the
CMPA.

In an RSS-based localization technique, the ¼ wavelength optimal antenna conse-
quently presents reliable localization performance where the angle with a transmitter
and a receiver is only lower than 24.5°. Moreover, when using a special antenna such
as the CMPA to alleviate antenna orientation and RSS fluctuation problems, more
restrictions on node-deployable environment, in terms of height difference, are im-
posed because the vertical radiation angle gets narrower.

Fig. 14. RSS vs. Distance in four cases that the transmitter and receiver are placed at different
heights for (a) a ¼wavelength monopole antenna and (b) our CMPA. Measurements were
conducted with a transmitter of fixed height and a receiver on a tripod, which can adjust
height.

Fig. 15. RSS vs. height difference of the transmitter and receiver at 2m distance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 S. Yang and H. Cha

6 Discussion

In Section 4.2, we showed that the RSS attenuates over distance without any fluctua-
tion when using a parabolic antenna whose vertical radiation pattern is very sharp
so that the reflection by ground does not occur. The problem of a conventional para-
bolic antenna is that it radiates RF only to the particular direction. Satisfying no RSS
fluctuation caused by ground reflecting, some special antennas make it possible to
obtain a horizontally omni-directional radiation pattern. Figure 16(a) shows the sche-
matic diagram of omni-directional antenna with dual reflectors of a paraboloid and a
cone [22]. Figure 16(b) shows another antenna design to satisfy both horizontally
omni-directional and horizontal-only radiation, which consists of an ellipse and a
paraboloid as a sub-reflector and a main-reflector respectively [23]. The problem in
constructing an antenna including a paraboloid is the size of the paraboloid. Since the
diameter of paraboloid requires it being larger than a wavelength of RF, it is not pos-
sible to apply a conventional dual reflector antenna directly to a WSN.

With a collinear antenna, it is also possible to reduce vertical radiation and increase
antenna gain such as with dual reflector antennas by increasing the number of coils or
loops. The problem with the collinear antenna, which satisfies the problem of a nar-
row angle of vertical radiation making no ground reflection, is the increased length of
antenna. The length of collinear antenna used in this paper is about 10cm, and the
length increases to 25cm if making an antenna that includes two loops to obtain 6dBi
gain. The length of antenna may get longer over 100cm for much less vertical radia-
tion. We expect that a ceramic antenna can solve this length problem because the size
of an antenna made with ceramic can be over 60% smaller than a conventional mono-
pole antenna [24], [25].

(a) (b)

Fig. 16. Schematic diagram and radiation direction on side view of dual reflector omni-directional
antenna consisting of (a) a paraboloid and a cone [22], and (b) an ellipse and a paraboloid [23]

7 Conclusions and Future Work

In this paper, we analyzed why the RF-based localization techniques do not work well
in practice and the corresponding solutions. Based on extensive experiments with the
widely-used CC2420 IEEE 802.15.4 compliant radio and various antennas, we con-
clude our work as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Empirical Study of Antenna Characteristics Toward RF-Based Localization 323

• Factors involved with the antenna orientation problem include a small ground
plane size and an electrical effect caused from other devices on a sensor mote.
Therefore, the antenna orientation problem can be eliminated by mounting an an-
tenna keeping a certain vertical distance away from a sensor mote or using an
antenna which has less radiation toward the downside to minimize distortion of
electrical fields.

• The asymmetric link in an obstacle-free environment is an incidental problem
caused by antenna orientation. Hence, it can be easily solved by removing the
cause of the antenna orientation.

• The RSS fluctuation is a problematic phenomenon in that the RSS attenuation over
distance is not held out at a certain reliable distance, and is caused by multi-path
fading, especially reflection by the ground in an obstacle-free environment. The re-
liable distance can be extended by replacing an antenna with one having a narrow
vertical radiation pattern, which leads the first reflection of RF on the ground to
occur at a greater distance.

• Dual reflector antenna or high-gain collinear antenna can be used for eliminating
both antenna orientation and RSS fluctuation problems in cases where sensor
motes are deployed in a relatively flat ground environment. We expect to reduce
the size of those antennas by building them of ceramic.

In future work, we plan to make a ceramic collinear antenna, which has similar
characteristics to that of a dual reflector antenna, satisfying the appropriate size speci-
fications in WSNs. With a specially made antenna, we hope to analyze and evaluate
the improvement of the accuracy in RF-based localization techniques for relatively
flat and obstacle-free environments.

Acknowledgments

This work was supported by the National Research Laboratory (NRL) program of the
Korea Science and Engineering Foundation (2005-01352), and the MIC(Ministry of
Information and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Information
Technology Advancement)" (IITA-2006-C1090-0603-0015).

References

1. Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J.: Global Positioning System:
Theory and Practice. 4th Ed., Springer Verlag (1997)

2. Patwari, N., and Hero III, A. O.: Using Proximity and Quantized RSS for Sensor Localiza-
tion in Wireless Networks. ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA) (2003)

3. Savarese, C., Rabay, J., and Langendoen, K.: Robust Positioning Algorithms for Distrib-
uted Ad-Hoc Wireless Sensor Networks. USENIX Technical Annual Conference (2002)

4. Savvides, A., Park, H., and Srivastava, M.: The Bits and Flops of the N-Hop Multilatera-
tion Primitive for Node Localization Problems. ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA) (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 S. Yang and H. Cha

5. Shang, Y., and Ruml, W.: Improved MDS-Based Localization. INFOCOM (2004)
6. Ji, X., and Zha, H.: Sensor Positioning in Wireless Ad-hoc Sensor Networks with Multi-

dimensional Scaling. INFOCOM (2004)
7. Bulusu, N., Heidemann, J., and Estrin, D.: GPS-less Low-Cost Outdoor Localization for

Very Small Devices. IEEE Personal Communications Magazine (2000)
8. Niculescu, D, and Nath, B.: Ad hoc Positioning System (APS). IEEE GLOBECOM (2001)
9. Yedavalli, K., Krishnamachari, B., Ravula, S., and Srinivasan, B.: Ecolocation: A Se-

quence Based Technique for RF Localization in Wireless Sensor Networks. Information
Processing in Sensor Networks (IPSN) (2005)

10. He, T., Huang, C., Blum, B. M., Stankovic, J. A., and Abdelzaher, T.: Range-Free Local-
ization Schemes for Large Scale Sensor Networks. ACM International Conference on Mo-
bile Computing and Networking (MobiCom) (2003)

11. Ganesan, D., Krishnamachari, B., Woo, A, Culler, D., Estrin, D., and Wicker, S.: Complex
Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks.
Technical Report, UCLA/CSD-TR 02-0013 (2002)

12. Cerpa, A., Busek, N., and Estrin, D.: SCALE: A Tool for Simple Connectivity Assessment
in Lossy Environments. CENS Technical Report 0021 (2003)

13. Zhao, Y. J., and Govindan, R.: Understanding Packet Delivery Performance in Dense
Wireless Sensor Networks. ACM Conference on Embedded Networked Sensor Systems
(SenSys) (2003)

14. Zhou, G., He, T., Krishnamurthy, S., and Stankovic, J. A.: Impact of Radio Irregularity on
Wireless Sensor Networks. International Conference on Mobile Systems, Applications,
and Services (MobiSys) (2004)

15. Lymberopoulos, D., Lindsey, Q., and Savvides, A.: An Empirical Analysis of Radio Signal
Strength Variability in IEEE 802.15.4 Networks using Monopole Antennas. European
Workshop on Sensor Networks (EWSN) (2006)

16. CC2420 Data sheet. http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf.
17. MoteIV, Tmote-Sky-Datasheet,

http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf.
18. Joseph, C. J.: Practical Antenna Handbook. 4th Ed., McGraw Hill (2001)
19. Taguchi, M., Yamashita, K., Tanaka, K., and Tanaka, T.: Analysis of coil-loaded thin-

wire antenna. IEEE International Symposium on Antennas and Propagation (1989)
20. Srinivasan, K., and Levis, P.: RSSI is Under Appreciated. 3rd Workshop on Embedded

Networked Sensors (EmNets) (2006)
21. Pacific Wireless, http://www.pacwireless.com/products/GD24_datasheet.pdf.
22. Orefice, M., and Pirinolli, P.: Dual Reflector Antenna with Narrow Broadside Beam for

Omnidirectional Coverage. Electron Letters Vol. 29 (1993) 2158-2159.
23. Bergmann, J. R., and Moreira, F. J. S.: An Omnidirectional ADE Reflector Antenna. Mi-

crowave and Optical Technology Letters Vol. 40 (2004)
24. Choi, W., Kwon, S., and Lee, B.: Ceramic Chip Antenna using Meander Conductor Lines.

Electronics Letters, Vol. 37, No. 15 (2001)
25. Moon, J., and Park, S.: Small Chip Antenna for 2.4/5.8-Ghz Dual ISM-Band Applications.

IEEE Antennas and Wireless Propagation Letters, Vol. 2 (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation
Based on Neighborhood Comparison

Carsten Buschmann1, Horst Hellbrück1, Stefan Fischer1, Alexander Kröller2,
and Sàndor Fekete2

1 Institute of Telemactics, University of Lübeck, Germany
{buschmann, hellbrueck, fischer}@itm.uni-luebeck.de

2 Institute of Mathematical Optimization, Braunschweig University of Technology,
Germany

{a.kroeller, s.fekete}@tu-bs.de

Abstract. Distance estimation is important for localization and a multi-
tude of other tasks in wireless sensor networks. We propose a new scheme
for distance estimation based on the comparison of neighborhood lists. It
is inspired by the observation that distant nodes have fewer neighbors in
common than close ones. Other than many distance estimation schemes,
it relies neither on special hardware nor on unreliable measurements of
physical wireless communication properties like RSSI. Additionally the
approach benefits from message exchange by other protocols and re-
quires a single additional message exchange for distance estimation. We
will show that the approach is universally applicable and works with
arbitrary radio hardware. We discuss related work and present the new
approach in detail including its mathematical foundations. We demon-
strate the performance of our approach by presenting various simulation
results.

1 Introduction

In sensor networks self-localization is an important part of self-organization [1].
Location information is essential for the detection of events and the tagging
of these events with their geographic origin. Considering a temperature sens-
ing network where some nodes experience a sudden temperature rise, nodes can
identify the bounding region of this incident with the help of their position.
However, GPS receivers are costly and energy consuming, and thus conflict with
major sensor node design goals: low price, tiny form factor and minimal energy
consumption. Hence not all nodes can be equipped with GPS, and other tech-
niques have gained popularity. These algorithms assume that a small number of
devices, so called anchors, already know their location. The other nodes try to
estimate their distances to the anchors and then infer their position through mul-
tilateration. Like this, distances became one of the key foundations for location
estimation based on anchor nodes [13]. Furthermore, proximity is an intrinsically
interesting property of environmental elements and other wireless sensor nodes.

Many different systems for distance estimation (often also called ranging) have
been developed. Nearly all of them employ a sender-receiver-scheme: one node

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 325–340, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 C. Buschmann et al.

emits some kind of signal, the other uses a special receiver to measure physical
signal properties such as attenuation or time of flight. These techniques will be
discussed in detail in the next section. If no direct range distance estimation
is possible, multi hop accumulation of distance estimates along the route from
anchor to the node is a common work-around (compare e.g. DV-Distance in [15]).

In this paper we present the neighborhood intersection distance estimation
scheme (NIDES). This novel approach to distance estimation does not rely on
special hardware or unreliable measurements of physical signal properties. In-
stead, it computes the distances from intersection of sets of adjacent nodes. It
is based on the observation that close sensor nodes share more neighbors than
distant ones. However, we show that the number of shared neighbors also de-
pends on the radio propagation properties. Hence, we developed a scheme that
is radio aware. We will show that the approach is generally applicable and will
work with arbitrary radio models.

The remainder of this paper is structured as follows. In the next section we
present related work that deals with distance estimation or employs neighbor-
hood lists. We review different distance estimation techniques and discuss their
advantages and disadvantages. In Section 3 we give an overview of different radio
models and show how their properties can be expressed in so called radio model
functions or probability functions. Section 4 then introduces the radio model
aware neighborhood intersection distance estimation scheme. We elaborate on
its mathematical foundations and discuss properties and factors of influence. In
addition, we point out how NIDES can be implemented as a distributed network
protocol. Section 5 reports the results of the simulative performance evaluation.
The paper is concluded by a summary and directions for future work.

2 Related Work

A number of techniques to acquire distance estimates between nodes have been
developed in the past.

One of the first approaches for distance estimation in ubiquitous computing
systems was proximity detection. Examples are the Active Badge [21] and the
Hybrid indoor navigation system [5]. They both use infrared light to periodically
transmit beacons with unique identification. The recipients of these beacons -
either the fixed infrastructure or the mobile devices - deduce proximity to the
beacon since the range of infrared signals is limited to a few meters of distance.
With increasing number of beacons a fine grained resolution is achievable. The
downside of this distance estimation technique is the very high deployment effort
and the need for a backbone infrastructure.

To enable infrastructure-less distance estimations, a broad range of techniques
have been proposed, deployed and researched in the past, which can be classified
into the following three categories: approaches based on (differential) time of
flight, radio signal strength and connectivity.

The measurement of the time of flight (ToF) of a signal is a robust method
to estimate distances which is used e.g. by GPS [12]. However, measurements

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 327

require a tight time synchronization of sender and receiver. Systems like Cala-
mari [22], Cricket [18], AHLoS [20] and others use a technique called "differential
time of arrival" (DTOA) to avoid complex time synchronization. They send out
two signals (usually ultra sonic sound and radio frequency signals) propagating
with different speeds and measure the difference in time of arrival. If both signal
propagation speeds are known, a distance can be derived from the delta of ar-
rival. The raw difference measurements tend to yield average estimation errors
of about 74% [22]. Yet, quite good accuracies can be achieved by post-processing
of the measured data with techniques like noise canceling, digital filtering, peak
detection and calibration. While some authors report average range estimation
errors of 10% [22], others claim an error of about 1% at a maximum range of
9 m [19]. In [23] the authors report the increase of the maximum range to 12 m
with an error of 0.5%.

While these systems yield low estimation errors they have two limitations that
confine their applicability in real world deployments. The first is their limited
coverage: They are typically able to cover 3–15 m [20] which is only a fraction
of the communication range of radio frequency transmitters. The second and far
more severe is that they require a separate sender/receiver pair, which implies
negative effects on size, cost and energy consumption. All three collide with the
aim to design tiny, cheap and highly energy efficient nodes for wireless sensor
networks [1].

In order not to require additional hardware, different other schemes have
been developed using the radio interface itself to infer distances to other nodes.
These approaches use radio signal attenuation properties to model the distance
between nodes as a function of the received signal strength indicator (RSSI).
Systems that rely on the RSSI as input parameter such as [4], [3], [2] tend to
be quite accurate for short ranges if extensive post-processing is employed, but
are imprecise beyond a few meters [14]. At short ranges, distance estimations
exhibiting errors of about 10% at the maximum range of about 20 m [23] are
feasible. The uncertainty of the radio propagation imposes problems like multi-
path propagation, fading and shadowing effects as well as obstacles in the line-
of-sight. These effects complicate the development of a consistent model [20]. As
a result systems relying exclusively on RSSI values remain inaccurage distance
estimators [8].

The idea presented in this paper is based on counting neighbors. Whether
communication with nearby node is possible depends also on a RSSI threshold
but NIDES inherently compensates RSSI inaccuracies by incorporating links to
many neighbors and merging the results instead of measuring the unreliable
RSSI values of a single link.

Another improvement of RSSI is presented in [14] where radio interferometry
techniques are used to achieve an average localization error of 3 cm and a range
of up to 160 m with a largest error of approximately 6 cm (which is about 0.04%).
However, radio interferometry seems to be susceptible to the effects of shadowing,
reflection and multi-path propagation. The downsides of the approach are the
high computational complexity of the algorithm and that it requires special

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

328 C. Buschmann et al.

features of the radio chip. In addition the accuracy is achieved by long lasting
measurements, which renders the approach impractical for mobile scenarios.

In [6], the authors present the idea to detect far away neighbors by comparing
neighborhood lists. However, by determining the percentage of shared neighbors
they do not estimate distances. Instead, that fraction influences the probability of
forwarding a received flooding message. The fewer neighbors the sender and the
receiver share, the higher the forwarding probability is. Thus, distant nodes have
a higher probability to forward packets, increasing the coverage per packet sent.
However, the authors limit usage of the neighborhood list to forwarding purposes.

3 Radio Model Properties

Not only due to the lack of hardware in real quantities but also for the sake
of simplicity researchers in the area of wireless sensor networks are forced to
use simulations for validation of algorithms and protocols. Therefore a number
of radio models have been developed in the past that express the physical layer
characteristics of the radio channel. The key characteristic to determine whether
a node is able to receive a radio packet transmitted from a node are the location
of sender and receiver, some models also include the status of the radio channel
(busy, free with a noise level).

The unit disk graph model (UDG) is the most common model in wireless sim-
ulations and available in all network simulators due to its simplicity. It is backed
by the observation that (for two dimensional scenarios) the signal strength of
wireless communication transceivers fades with the square of the distance from
the sender. Given a minimum signal strength required for reception, nodes within
the radius of a disk can receive frames from sending nodes. It is rotationally sym-
metric, and hence yields bidirectional links. Figure 1(a) depicts the radio model
function of the unit disk graph model. Here and in all following figures, the
communication range has been normalized to 1.

However, experiments have shown that especially in wireless sensor networks
with their simple transceivers fading is not circular [9], [25]. To cope with irregu-
larities in the transmission range that is common to real world networks different
new models have been proposed. The DOI-Model (DOI means for degree of ir-
regularity) [10] introduces two limits: below the minimum range communication

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

f(
x)

x/r

(a) Unit disk graph model

 1

-1.5 -1 -0.5 0 0.5 1 1.5
x -1.5

-1
-0.5

 0
 0.5

 1
 1.5

y

 0
 0.2
 0.4
 0.6
 0.8

 1

f(x,y)

(b) Radio irregularity model
(DOI=0.01)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

f(
x)

x/r

(c) Stochastic model

Fig. 1. Probability functions of different radio models

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 329

is always possible, above the maximum range communication always fails. In
between the two the communication range varies depending on the angle. The
DOI factor determines the maximum change in transmission range per degree
and thus controls the irregularity of the radio shape (also see Figure 1(b)). In
contrast to the circular shape of the unit disk graph model, the DOI model also
yields unidirectional links. The radio irregularity model (RIM) [25] further ex-
tends the DOI-Model with individual variable sending power that influences the
radius of the DOI-shape.

The radio irregularity model is still an oversimplification of the existing radio
characteristics because wireless links tend to be error prone so that only a portion
of packets is received successfully. Note that for the DOI model nodes within the
transmission area receive 100% of the transmitted packets. Measurements in
[9] show that packet reception probability decreases with distance but it has
a fairly long tail (i.e. even nodes at distances far beyond r may occasionally
receive packets). To address this fact Zuniga and Krishnamachari [26] developed
a statistical radio model that describes a function for receiving probability fading
with the distance. Like the radio irregularity model, it has two bounds. While
reception is always possible below the first one, it never takes place above the
second. Other than RIM it is rotiationally symmetric but still yield unidirectional
links. Figure 1(c) shows a so called linear stochastic model where the change of
the packet reception ratio is modelled by a straight line. The bounds are set to
0.75r and 1.25r here.

There are many other less commonly used radio models, including models a
special areas e.g. for cellular network planning. However, these do not provide
universal results and are not considered hence.

We will show that NIDES is a general approach for distance estimation that
is able to work with arbitrary radio models including unit disk graph, RIM and
stochastic radio models.

4 Radio Model Dependent Distance Estimation

The basic idea of the neighborhood intersection distance estimation scheme
(NIDES) is to estimate the distance between neighboring nodes from the per-
centage of neighbors they share. It is based on the observation that two nodes
have most of their neighbors in common if they are located close to each other
while distant nodes will share fewer or no neighbors at all. For simplification of
the model construction we assume a locally uniform node distribution and derive
a relation between the percentage of common neighbors of two nodes and their
distance. We will address this issue later on in Section 5.

We will show that the fraction of shared neighbors changes with the cho-
sen radio model and will present a generic way to estimate distances with an
arbitrary model.

For three different radio models illustrated in Figure 1, an example scenario
with the shared neighbors (filled black circles) of two nodes (with an extra black
ring) is depicted in Figure 2. Note that the two black nodes feature the same

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 C. Buschmann et al.

distance in all three cases, variations in the number of common neighbors date
back to the radio model. In Figure 2(a) the unit disk graph radio model was
employed. The two disks with radius r are indicated as thin circles. The two
nodes share 26 neighbors. Figure 2(b) shows the use of the radio irregularity
model, the two nodes have 27 common neighbors. The stochastic model was
used in the scenario in Figure 2(c), the pair of circles around the two nodes
indicates distances of 0.75r and 1.25r. Here, 23 neighbors are shared.

It is evident that the fraction of common nodes varies with the chosen ra-
dio model. As a result, distance estimation based on neighborhood intersection
without taking the radio model into account will be incorrect. The model should
rather be considered as an integral factor of influence for neighborhood-based
distance estimation. Hence we propose a scheme that is radio model-aware and
incorporates its properties.

Neighborhood-based distance estimation requires a mapping between the frac-
tion of shared neighbors s of two nodes and their expected distance d from each
other that takes the radio model into account. In the following paragraphs we
show how a distance estimation function d(s) can be constructed from a given
radio model, here described as a two-dimensional function.

The starting point of the construction is the radio model function f : R×R →
[0, 1]. It describes the probability that a node that has a position offset of (x, y)
to another node can receive its radio signals.

Some radio models provide only a one-dimensional function f1 : R → [0, 1]
that models the communication probability as a function of the distance between
two nodes (i.e. the radio model is rotationally symmetric). Examples are the
unit disk graph or the stochastic radio model. In these cases, a two-dimensional
function f(x, y) can easily be constructed by rotating f1 around the z-axis. The
resulting function looks as follows:

f(x, y) = f1(
√

x2 + y2) (1)

The created function now also describes the probability that a node located
at (x, y) can receive packets from the node at (0, 0).

(a) Unit disk graph
model

(b) Radio irregularity
model (DOI=0.01)

(c) Stochastic model

Fig. 2. Number of common neighbors varying with the employed radio models

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 331

An example for f is shown in Figure 1(b). It depicts the communication
probability function of the radio irregularity model with the degree of irregularity
set to 0.01.

The estimation function d(x) can now be calculated by convolving f . Because
in the general case f is not rotationally symmetric, it must also be rotated during
the convolution.

frot(x, y, α) = f(x cos(α) + y sin(α), −x sin(α) + y cos(α)) (2)

describes f rotated around the z-axis by α. It is translated along the x-axis by
d by subtracting d from x. (d will be the distance between the nodes).

The fraction of shared neighbors over distance is now given by s : R+ → [0, 1]:

s(d) =
∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞ frot(x − d, y, α) frot(x, y, α)dxdy∫ ∞

−∞
∫ ∞
−∞ frot(x, y, α)dxdy

dα (3)

While we here integrate from −∞ to ∞ for the sake of generality, the limits
can be adopted to the area of the radio model that adds non-zero values to the
integral.

If the radio model is rotationally symmetric like the unit disk graph or the
stochastic radio model, the rotation within the convolution can be omitted. The
function s(d) is then given by

s(d) =

∫ ∞
−∞

∫ ∞
−∞ f(x − d, y)f(x, y)dxdy∫ ∞
−∞

∫ ∞
−∞ f(x, y)dxdy

. (4)

In both cases s(d) gives the expected fraction of shared neighbors for a certain
distance d.

Figure 3 depicts the result for s(d) of different radio models. For the radio ir-
regularity model, it is depicted in Figure 3(a), the unit disk graph and stochastic
model are shown in subfigure (b) and (c).

Because s describes the fraction of shared neighbors depending on the dis-
tance, its inverse function is required for distance estimation:

d(s) = s−1(d) (5)

To obtain unique results, sn needs to be monotonically decreasing. This is the
case for all presented radio models.

So far we have shown how the distance estimation function d(s) can be con-
structed from the radio model probability function f(x, y). In order to employ
NIDES in a real world wireless network, basically three steps must be taken:

1. The behavior of the employed communication hardware must be modeled,
i.e. the radio model probability function must be determined. This can e.g.
be done by conducting measurements. An alternative might be to consult
data sheets of the manufacturer.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

332 C. Buschmann et al.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

s(
d)

d

(a) Radio irregularity model

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

s(
d)

d

(b) Unit disk graph model

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2

s(
d)

d

(c) Stochastic model

Fig. 3. s(d) for different radio models

2. Once the probability function f(x, y) is known, s(d) can be calculated as de-
scribed above. It can be used to obtain a lookup table for different distances
d, the so called estimation table. It can be stored in the code segment of the
target hardware, and hence does not consume any random access memory.

3. At runtime, only neighborhood information must be exchanged between the
nodes. When distances need to be estimated, the estimates can be looked up
in the estimation table.

Note that the first two steps are done prior to deployment. The generated table
is part of the software of the nodes. In this way, every node can estimate the
distances to its neighbors if it knows its own neighbors as well as the neighbors
of its neighbors. To make sure all nodes have these pieces of information, each
node must broadcast two data packets. Due to length limitation of this paper we
will only consider distance estimation based on single-hop-neighborhoods here.

First, all nodes must send out a ’hello’ packet that enables nodes in range to
take notice of them. The sending nodes are inserted into the receivers’ neighbor
lists. Finally, all nodes have built up their own completed list from the hello
packets received. This list must be kept in memory and will be augmented with
information about the neighbor distances in the second step. For fast access,
the neighbor list should be kept sorted by the node IDs. Unsigned 16 bit val-
ues should usually be sufficient to uniquely identify all neighbors. If memory is
extremely scarce, neighbor addresses can be easily mapped to at least locally
unique (maybe actually 8-bit) identifiers. Even in dense networks with 50 neigh-
bors, this list requires only 100 bytes of memory.

In a second data packet, each node broadcasts its neighbor list. When an ad-
jacent node receives it, it can calculate the number of shared neighbors ncommon.
Because both the received and the local list are sorted, it is enough to iterate
once through both lists.

After ncommon has been acquired, a second value ntotal representing the overall
number of neighbors needs to be determined in order to calculate the fraction
s of common neighbors. We propose to employ the average neighbor count, i.e.
the mean length of the received and the local neighbor list. Thus fluctuations
in the node density and hence in the number of neighbors can be partially
compensated for. Note that we do not consider the two nodes to be part of
their own neighborhood, and hence omit them when calculating s = ncommon

ntotal
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 333

Now the receiver can calculate the distance to the sender using d(s) and store
the value in a distance list at the index of the sender. Note that it is not required
to store the received neighbor list permanently; it can be disposed after the
distance has been computed. Only the local neighbor list and the corresponding
distances must be kept in memory. To represent the distances, an unsigned 8 bit
value should be sufficient.

In some cases, nodes will already have neighbor lists available although NIDES
did not explicitly exchange hello messages. Examples for other software that
collects neighbor information are routing protocols such as AODV [17], protocols
for topology control like SPAN [7] or clustering schemes. When neighbor lists
are available from other protocols, the step of broadcasting hello messages can
be omitted. Nevertheless, the transmission of the list in the second packet is still
required.

5 Simulative Evaluation

To evaluate the distance estimation accuracy of NIDES we ran an extensive
set of simulations different scenarios using ns-2 [16]. We implemented the radio
irregularity and stochastic communication model by extending the free space
radio propagation model.

Fig. 4. Simulation scenario

We used the simulation scenario depicted in Figure 4. When analyzing the es-
timation accuracy, we only considered nodes that were located inside the dotted
inner rectangle. The width of this inner area is 2r smaller than the simulation
area, where r is the communication range. Thus the full communication range
of the considered nodes resides within the simulation area (c.f. node n1). This
avoids edge effects that would be caused by missing neighbors for node n2 on
the left. In order to obtain simulation results for different network densities (i.e.
different average neighborhood sizes) we calculated the size of the inner area de-
pending on the desired network density so that a fixed number of nodes resided
inside. The size of the full simulation area and the overall node number can
then be calculated accordingly. Nodes were spread randomly over the full sim-
ulation area, i.e. their x and y coordinates where taken from a uniform random
distribution. The average communication range was set to 100.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

334 C. Buschmann et al.

We iterated over all pairs of adjacent nodes inside the inner rectangle, es-
timated their distances using NIDES, and compared these estimates to their
real Euclidean distances. To obtain statistically sound results, we averaged the
results of 100 simulations with the same parameter set.

We focus on simulation results for the radio irregularity model, because it
has been developed especially for wireless sensor networks and represents many
properties that are typical for this network type. We later present results for the
unit disk graph model and the stochastic model.

Depending on radio propagation properties, it is not uncommon that links
between nodes are only uni-directional. This effect does not harm the protocol
proposed above and also occurs in the simulative evaluation.

5.1 Radio Irregularity Model

Figure 5(a) shows an interquartile diagram of the estimation error over the
average neighborhood size.

In an interquartile diagram, each bar describes a value distribution where only
25% of the values lie above the upper bound and below the lower bound of the
bar. Figure 5(a) also includes the mean absolute error and the median. For the
earlier the absolute error values were summed up for all considered distances
and divided by their number, while for the latter a value is selected so that half
of the errors are bigger and the other half is smaller. Hence the median indicates
whether the estimates are biased.

The diagram was obtained through simulations with the radio irregularity
model and the DOI set to 0.01, the estimation function depicted in Figure 3(a)
was used. The error is expressed as a fraction of the communication range r.

The spread of the interquartiles decreases with increasing network densities,
i.e. neighborhood sizes. As expected, the estimates get more exact with big-
ger neighborhoods. With many neighbors, the interquartile of the estimates lies
within 0.07r around the correct distance (i.e. 50% of the estimates feature an

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 5 10 15 20 25 30 35 40 45 50

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Density

Quartiles
Median

Mean absolute error

(a) Error over density

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1 1.2

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Distance as fraction of communication range

Quartiles
Median

Mean absolute error

(b) Error over distance

Fig. 5. Error characteristic, uniform node distribution, radio irregularity model
(DOI=0.01)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 335

error of less than 7% of the communication range). For densities above 10 the
mean absolute error is below 20% of the communication range. Note that the me-
dian error is always very close to zero which means that NIDES has no tendency
at all to systematically over- or underestimate distances.

Research has shown that mobile ad-hoc networks tend to partition with high
probability if the density, i.e. the average neighborhood size, is below 10 [11].
Others proved that the density required for full connectivity depends on the
network size. The more nodes a network consists of, the higher the required
density is [24]. For a network comprising 300 nodes, a density of about 13 is
needed. Hence, we consider an average neighborhood size of 15 to be a reasonable
choice for wireless sensor networks.

With 15 neighbors, the mean error is about 0.15r with an interquartile spread
of about 0.2. This means that 50% of the estimates feature an error of 0.1r or
less. If not indicated differently, the simulation results presented in the remainder
of the paper feature a density of 15.

We then studied the dependency of the estimation accuracy on the actual
distance between the two involved nodes. Figure 5(b) depicts an interquartile
diagram of the error over the Euclidean node distance. Both distance and error
are expressed as a fraction of the communication range.

The mean absolute error and the interquartile spread increase with the real
distance between the two estimating nodes. The reason for that is the decreasing
absolute number of shared neighbors. Hence density fluctuation gains impor-
tance, and leads to an increased error spread. However, the interquartile spread
stays below ±0.15r and the mean absolute error is always less than 0.18r. If these
values are averaged over all distances, a mean error of 0.15r and an interquartile
spread of ±0.1r result (as indicated in Figure 5(a) at x=15).

Finally we conducted simulations with non-uniform node distributions. An
example of a Gaussian node distribution over the simulation area is depicted in

 0 500 1000 1500 2000 2500 0
 500

 1000
 1500

 2000
 2500

 0
 5

 10
 15
 20
 25
 30

m
m

(a) Gaussian node distribution in the sim-
ulation area

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Distance as fraction of communication range

Quartiles
Median

Mean absolute error

(b) Error over distance

Fig. 6. Gaussian node distribution and resulting error characteristic for the radio ir-
regularity model

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 C. Buschmann et al.

Figure 6(a). It shows the node density at every point of the simulation area and
results from averaging 100 simulations runs. As for the results discussed above,
the average node density is set to 15. Different from the scenarios above, we
considered all nodes including those at the edges of the network here.

The resulting error characteristic is presented in Figure 6(b). It closely resem-
bles the results obtained with uniform distributions. The error decreases even
a bit because of the increased density in the center of the simulation area. The
median runs along the x-axis, so obviously the non-uniform distribution does
not lead to biased results.

5.2 Linear Stochastic Radio Model

In this subsection we consider the influence of the stochastic model on distance
estimation performance. We employed the linear variant with the bounds set to
0.75r and 1.25r (both as indicated in Figure 1(c)). The corresponding estimation
function is depicted in Figure 3(c).

Figure 7 shows the according diagrams. Subfigure 7(a) indicates the distribu-
tion of the estimation error depending on the network density (again indicated
as a fraction of the communication range r). The mean absolute error is below
0.20r for a density of 10 and goes down to 9% of the communication range for a
density of 50 while the interquartile spread ranges between ±0.17r and ±0.07r.
For a density of 15, the mean absolute error is 16% of the communication range
while half of the estimates exhibit an error within 0.12r and 0.14r. The median
is always very close to zero.

These values indicate a slightly lower accuracy as if the radio irregularity
model was used. The reason for that can be found when looking at Figure 7(b).
It indicates the influence of the real distance on the estimation error at a density
of 15. While similar to the radio irregularity model for distances above 0.3r, the
stochastic model shows a different behavior below that. The reason is that even if
nodes are very close to each other, their neighborhood can vary heavily because
the radio model determines a significant fraction of neighbors randomly. This

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 5 10 15 20 25 30 35 40 45 50

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Density

Quartiles
Median

Mean absolute error

(a) Error over density

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1 1.2

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Distance as fraction of communication range

Quartiles
Median

Mean absolute error

(b) Error over distance

Fig. 7. Error characteristic for the linear stochastic radio model

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 337

especially means that even if two nodes are located at the same spot, they will
share only 83% of their neighbors on average (compare the distance estimation
function depicted in Figure 3(c) at x = 0). If nodes have a distance in between
each other but share 83% of their neighbors or more, NIDES will estimate their
distance as 0, which leads to underestimations for small distances.

In addition, the run of the estimation function is quite flat for small values of x.
Thus already minor changes in the fraction of shared neighbors lead to significant
changes in the estimated distance. If nodes are close but share slightly less than
83% neighbors of their neighbors, NIDES will estimate a distance relatively far.

Together with the random selection of neighbors, this results in a relatively
high error spread for small distances.

However, for small real distances, the negative estimation error is bound by
the actual distance of the nodes. Hence also the lower interquartile can be no
bigger than the real distance, as visible in Figure 7(b) for distances below 0.23r.

The increased error for short distances has a negative impact on the overall
error. However, this influence is bounded to about 1% of the communication
range.

5.3 Unit Disk Graph Model

If the unit disk graph radio model is used, the performance of NIDES is very
similar to the case when the radio irregularity model is used.

Figure 8 shows the according diagrams. We used the estimation function de-
picted in Figure 3(b).

Subfigure 8(a) indicates the influence of the average density on the estimation
error (again indicated as a fraction of the communication range r). The mean ab-
solute error is 0.27r for a density of 5 and goes down to 7% of the communication
range for a density of 50 while the interquartile spread ranges between ±0.21r
and ±0.06r. For a density of 15, the mean absolute error is 15% of the communi-
cation range while 50% of the estimates exhibit an error of below ±0.12r. These
values indicate a slightly higher accuracy as if the radio irregularity model is
used. The median is running along the x-axis.

Subfigure 8(b) indicates the influence of the real distance on the estimation
error. Again, the behavior of the radio irregularity model is slightly mimicked
except for a slightly higher accuracy.

However, the median is not centered for very short distances. It runs on a line
that is defined by g(x) = −x instead. This indicates that half of the estimates
are 0 even though the nodes have a certain distance, i.e. their displacement is
underestimated exactly by their Euclidean distance. The reason is that nodes
that are very close to each other have a certain probability of sharing all neigh-
bors. It is due to the fact the fractions of shared neighbors are discrete and only
certain values occur (e.g. 15

15 and 14
15 , but nothing in between) while the real node

distance is continuous. This effect occurs again at about 0.55r and 0.8r. Around
there, different distances must be mapped on the same fraction.

The effect depends on the node density: the higher the density, the smaller the
effect (because the denominator increases). It also appears with the stochastic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

338 C. Buschmann et al.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 5 10 15 20 25 30 35 40 45 50

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Density

Quartiles
Median

Mean absolute error

(a) Error over density

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1

E
rr

or
 a

s
fr

ac
tio

n
of

 c
om

m
un

ic
at

io
n

ra
ng

e

Distance as fraction of communication range

Quartiles
Median

Mean absolute error

(b) Error over distance

Fig. 8. Error characteristic for the unit disk graph radio model

and the radio irregularity model but is not as clearly visible because it is averaged
out by other stochastic effects. However, it never significantly influences the
estimation accuracy.

6 Conclusion and Future Work

In this paper we presented the neighborhood intersection distance estimation
scheme (NIDES). This novel approach computes distance estimates from inter-
section cardinalities of sets of adjacent nodes. In other words, its operation is
based on the observation that nodes that are located close to each other share
many of their neighbors whereas distant nodes share only few neighbors. While
doing so, the presented scheme is radio model aware, i.e. the function that derives
the actual distance estimate from the fraction of shared neighbors is constructed
from the radio model and hence incorporates the radio properties.

Through simulations we assessed the accuracy of NIDES. While the scheme
gets more accurate with increasing network density, it regardless of the radio
model yields an average deviation of only about 15% of the communication
range when nodes have about 15 neighors.

Thus NIDES classifies in between existing approaches for distance estimation.
It achieves a higher accuracy than estimates based on RSSI. Estimates based on
differential time of flight feature a higher accuracy than NIDES but demand for
specific hardware such as ultra sound emitters and receivers. These have negative
effects on cost, size and power consumption, which seems disadvantageous espe-
cially for wireless sensor networks. In addition, these have only a very limited
maximum range compared to NIDES. Radio interferometry features promisingly
low errors but requires specific RF chip properties. Also, this approach needs long
series of measurements and complex processing, two disadvantages that can be
omitted when neighborhood intersection is used.

We are currently preparing large scale experiments with real sensor network
hardware to further validate our simulation results. In the future, we plan to
extend NIDES to consider two hop neighborhoods. This enables nodes to sort

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Radio Propagation-Aware Distance Estimation 339

neighbors with regard to angle, which opens up new vistas for location estimation
protocols. In addition, angles along multi hop paths can be estimated. Multi hop
distance estimation will also be in the focus of future work.

References

1. I. F. Akyildiz, Y. S. W. Su, and E. Cayirci. Wireless sensor networks: A survey.
Computer Networks, 38(4):393–422, Mar. 2002.

2. P. Bergamo and G. Mazzini. Localization in sensor networks with fading and
mobility. In Proceedings of the 13th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, 2002.

3. J. Beutel. Geolocation in a picoradio environment, 1999.
4. N. Bulusu, J. Heideman, and D. Estrin. Gps-less low cost outdoor localization for

very small devices. IEEE Personal Communications, 2000.
5. A. Butz, J. Baus, A. Krüger, and M. Lohse. A hybrid indoor navigation sys-

tem. In IUI ’01: Proceedings of the 6th international conference on Intelligent user
interfaces, pages 25–32, New York, NY, USA, 2001. ACM Press.

6. J. Cartigny and D. Simplot. Border node retransmission based probabilistic broad-
cast protocols in ad-hoc networks. In HICSS ’03: Proceedings of the 36th Annual
Hawaii International Conference on System Sciences (HICSS’03) - Track 9, page
303, Washington, DC, USA, 2003. IEEE Computer Society.

7. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks.
Wirel. Netw., 8(5):481–494, 2002.

8. E. Elnahrawy, X. Li, and R. P. Martin. The limits of localization using signal
strength: A comparative study. In EEE SECON, 2004.

9. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
Complex behavior at scale: An experimental study of low-power wireless sensor
networks, 2002.

10. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-free
localization schemes for large scale sensor networks. In MobiCom ’03: Proceedings
of the 9th annual international conference on Mobile computing and networking,
pages 81–95, New York, NY, USA, 2003. ACM Press.

11. H. Hellbrück and S. Fischer. Towards analysis and simulation of ad-hoc net-
works. In Proceedings of the 2002 International Conference on Wireless Networks
(ICWN02), pages 69–75, Las Vegas, Nevada, USA, June 2002. IEEE Computer
Society Press.

12. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning System:
Theory and Practice. Springer, 5 edition, 2001.

13. K. Langendoen and N. Reijers. Distributed localization in wireless sensor networks:
a quantitative comparison. Comput. Networks, 2003.

14. M. Maroti, P. Völgyesi, S. Dora, B. Kusy, A. Nadas, A. Ledeczi, G. Balogh, and
K. Molnar. Radio interferometric geolocation. In SenSys "05: Proceedings of the
3rd international conference on Embedded networked sensor systems, 2005.

15. D. Niculescu and B. Nath. Ad hoc positioning system (aps). In Proceedings of
GLOBECOM, San Antonio, November 2001., 2001.

16. The Network Simulator ns-2 (v2.29). http://www.isi.edu/nsnam/ns/, October
2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

340 C. Buschmann et al.

17. C. Perkins. Ad hoc On-Demand Distance Vector (AODV) Routing. Request for
Comments 3561, Network Working Group, Internet Engineering Task Force, July
2003.

18. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-
support system. In MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages 32–43, New York, NY,
USA, 2000. ACM Press.

19. J. Sallai, G. Balogh, M. Maroti, A. Ledeczi, and B. Kusy. Acoustic ranging in
resource-constrained sensor networks. In International Conference on Wireless
Networks, 2004.

20. A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization
in ad-hoc networks of sensors. In MobiCom ’01: Proceedings of the 7th annual
international conference on Mobile computing and networking, pages 166–179, New
York, NY, USA, 2001. ACM Press.

21. R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location system.
ACM Transactions on Information Systems, 10(1):91–102, 1992.

22. K. Whitehouse and D. Culler. Calibration as parameter estimation in sensor net-
works. In WSNA ’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 59–67, New York, NY, USA,
2002. ACM Press.

23. K. Whitehouse, C. Karlof, A. Woo, F. Jiang, and D. Culler. The effects of ranging
noise on multihop localization: an empirical study. In The Fourth International
Conference on Information Processing in Sensor Networks (IPSN "05), 2005.

24. F. Xue and P. R. Kumar. The number of neighbours needed for connectivity of
wireless networks. IEEE Wireless Networks, 10(2):169–181, 2004.

25. G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity
on wireless sensor networks. In MobiSys ’04: Proceedings of the 2nd international
conference on Mobile systems, applications, and services, pages 125–138, New York,
NY, USA, 2004. ACM Press.

26. M. Zuniga and B. Krishnamachari. Analyzing the transitional region in low power
wireless links. In First IEEE International Conference on Sensor and Ad hoc
Communications and Networks (SECON), October 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation
Using Scalable Data Fusion

Albert Krohn1, Mike Hazas2, and Michael Beigl3

1 Telecooperation Office, University of Karlsruhe, Germany
krohn@teco.edu

2 Lancaster University, United Kingdom
3 Distributed and Ubiquitous Computing Group, University of Braunschweig,

Germany
beigl@ibr.cs.tu-bs.de

Abstract. Methods for node localisation in sensor networks usually
rely upon the measurement of received strength, time-of-arrival, and/or
angle-of-arrival of an incoming signal. In this paper, we propose a method
for achieving higher accuracy by combining redundant measurements
taken by different nodes. This method is aimed at compensating for the
systematic errors which are dependent on the specific nodes used, as well
as their spatial configuration. Utilising a technique for data fusion on the
physical layer, the time complexity of the method is constant and inde-
pendent of the number of participating nodes. Thus, adding more nodes
generally increases accuracy but does not require additional time to re-
port measurement results. Our data analysis and simulation models are
based on extensive experiments with real ultrasound positioning hard-
ware. The simulations show that the ninety-fifth percentile positioning
error can be improved by a factor of three for a network of fifty nodes.

1 Introduction

In sensor networks, knowledge of physical node topology is important for packet
routing, power control, location annotation of gathered sensor data, and to sat-
isfy demands for specific application areas, such as mobile computing. A variety
of solutions for node localisation have been proposed, concentrating on both
sensing technologies and algorithms. These techniques have traditionally traded
off performance attributes (such as accuracy and location update rate) with
resource requirements (such as sensor node cost, power consumption, computa-
tional complexity, and communication overhead).

There has been a significant amount of effort invested in improving the accu-
racy of the location result while keeping the algorithm resource requirements to
a reasonable level. More recently, some researchers have become concerned with
characterising how the location result is affected by the error of the raw sensor
measurement (such as radio signal strength, range, or angle-of-arrival) [1,2]. In
this paper, we introduce a new method wherein the systematic measurement er-
ror typically found in localisation systems can be dramatically reduced without

K. Langendoen and T. Voigt (Eds.): EWSN 2007, LNCS 4373, pp. 341–356, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

342 A. Krohn, M. Hazas, and M. Beigl

incurring additional computational complexity or communication overhead. In
fact, as the number of nodes within sensing range increases, the communication
overhead of the method stays constant, and the overall accuracy gain improves.

1.1 Related Work

A number of systems have been developed for tracking people and objects [3].
These have employed a variety of sensing media, including infrared, ultrasound,
RF signal strength, ultra-wideband radio, computer vision, and physical contact.
However, many of these systems have been designed for static deployment using
dedicated infrastructure.

Other systems have been specifically designed for the processing, communi-
cation, power constraints, and dynamic deployments imposed upon sensor net-
works. Primarily, these have relied upon creating ranging estimates using the
received signal strength indication (RSSI) provided by a sensor node’s radio
transceiver [4,5], or creating finer-grained (centimetre-scale) ranging estimates
by measuring the time-of-flight of an acoustic signal [6,7,8]. Recently, it has been
shown that competitive ranging accuracies are possible by measuring the phase
offset between two slightly different radio carrier frequencies [9]. Some authors
have also proposed measuring the angle-of-arrival of a signal, to be used to com-
pute node orientation [7], or as a quantity to be used in triangulation to produce
location results [10] (as opposed to trilateration which is applied using range
measurements).

There has been a large focus on developing and comparing algorithms which
take sensed ranges and compute location results with varying degrees of dis-
tributed operation [11]. Some of the algorithms do not require anchor nodes
whose location is previously surveyed or known—these algorithms produce a set
of relative coordinates which describe the spatial layout of the nodes with respect
to one another, but not to any global reference point [12,13]. Relative location
solutions are often sufficient for the purposes of network routing or analysing
how sensor readings vary across the network (e.g. temperature and humidity in
environmental monitoring). Researchers have also analysed the effects of ranging
noise on the location results [1,14]. One paper in particular showed for multi-hop
networks how ranging and angle-of-arrival measurement error creates accuracy
bounds for the location result [2].

1.2 Motivation

Much in the spirit of the latter papers, our approach is informed by analysis
of measurement error. However, rather than try to produce increasingly robust
(and possibly resource-intensive) algorithms, we chose to address the measure-
ment error, specifically the systematic error that is common in many sensor
node localisation systems. This paper’s contribution is twofold. First, it presents
a method to reduce systematic errors usable for many sensor measurement set-
tings. Second, a lightweight framework is proposed which requires minimal hard-
ware, software and network resources and is able to support such error reduction
even in scenarios where there are a large number of sensor devices.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 343

Systematic errors appear as constant and repeatable error within measured
quantities. This systematic error component can arise due to sensor decalibration
(e.g. misalignment of an acoustic sensor) or environmental interference which is
constant for that spatial distribution of nodes (e.g. a metal object is present near
one of the nodes, affecting its radio RSSI measurements).

Because a large component of the systematic error is hardware-dependent or
spatially-dependent and thus different for each node in the system, we propose
fusing the measurements taken by different nodes together in order to “average
out” this measurement offset. This can be done when the nodes are capable of in-
dependently computing estimates of the same spatial quantities. For example, if
all nodes in a system are capable of independently estimating the range between
two given nodes, then all of these range measurements could be combined to pro-
duce an inter-node range whose systematic error component is much reduced.

As more nodes join the system and are capable of measuring the same physical
quantities, then the communication overhead required for each node to report its
measurement can become prohibitively expensive, especially if measurement up-
dates need to be provided at a high rate. To avoid this, our method accomplishes
the averaging by using a physical layer data fusion technique called synchronous
distributed jam signalling (SDJS). This allows all nodes to report their measure-
ments for a given quantity simultaneously. Thus, the communication overhead
for our method is constant and independent of the number of nodes in the sys-
tem. The error models, proof-of-concept, and simulations are based on extensive
data gathered using an ultrasonic relative positioning system [15].

1.3 Target Application Scenarios

Because our method relies upon averaging of measurements from different nodes
to remove large systematic errors, it naturally grows more effective when there
are greater numbers of nodes within measurement range of one another. High
node densities are often envisioned for application scenarios such as environmen-
tal habitat monitoring and battlefield surveillance, and it is typical to consider
high node densities in analyses of node localisation algorithms and error [2,11,13].

Another application area which envisions high node densities is that of mo-
bile and ubiquitous computing. In such scenarios, it is assumed that everyday
objects such as mobile phones, furniture, or even coffee cups are embedded with
microcontrollers, sensors, and wireless communication. These augmented objects
are thus able to sense, compute, communicate, and work together to aid people
in their everyday tasks. Contextual data is often needed for this, and one of the
most important types of context data is location information. Thus, accurate
localisation is an important goal for the dense settings of sensors envisioned for
mobile and ubiquitous computing.

2 System Operation

This section discusses the attributes and operation of the type of positioning
sensor network that we consider in this paper. We begin with a notation for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

344 A. Krohn, M. Hazas, and M. Beigl

relative positioning systems and then discuss how nodes can locally estimate the
same physical quantity. Throughout this paper, we focus on implementation and
analyses of 2D localisation systems, such as the hardware platform in figure 1,
but similar methods could be applied for 3D systems.

2.1 Relative Positions

Figure 2 depicts three sensor nodes which take measurements that can be used
to estimate the nodes’ relative positions. Each node in figure 2, denoted with a
capital letter, defines its own local coordinate system, referenced to its sensor
hardware. In figure 2 this is marked with the local (x,y) - coordinate systems that
belong to each of the nodes. Relative positioning systems normally do not use
anchor nodes or global coordinate systems, so we have to clarify a relative posi-
tion (which is a vector) by always including the according reference coordinate
system in the notation.

Fig. 1. A node used for ultrasonic rel-
ative positioning

Fig. 2. Relative positioning of nodes

For example,
−→
ABA expresses the position of B (meaning the vector A to B) in

the view of a local coordinate system of A. If we determine relative positions via
multiple hops, we can just add the vectors together as long as we assure to use
the same reference coordinate system for all vectors. Different views of positions
(and therefore vectors) can be translated by simply transforming the according

coordinate systems. The position of C in figure 2 in the view of A (=
−→
ACA) can

be combined through step by step summation of a vector chain from A to C:

−→
ACA =

−→
ABA +

−→
BCA

−→
BCA =

(
cos ρ − sin ρ

sin ρ + cos ρ

) −→
BCB (1)

ρ = φ + (180o − ϕ)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 345

2.2 Creating Local Estimates of the Same Physical Quantity

As described above, relative positions and orientations can be computed by ap-
plying trigonometry to measured ranges, angles-of-arrival, and angles-of-emission.
The method proposed in this paper relies upon multiple nodes being able to in-
dependently create local estimates of a given physical quantity so that they can
then be fused to improve accuracy. We now give two examples of how multiple
distributed estimates of the same physical quantities would be created:

Ranging. For example, many observing nodes might independently estimate
the range between two beaconing nodes A and B. To do this, an observing node
(for example C) would need to minimally measure its range to A and B (dAC and
dBC), as well as the angles-of-arrival of the ranging signals from both A and B
(φAC and φBC). Applying the Law of Cosines, the observing node C could then
estimate dAB with only these locally-measured quantities. Using experimental
data, Section 4.2 demonstrates that ranges locally estimated in this way by three
observing nodes can be fused together to yield an improved range result.

Positioning. Alternatively, many nodes might each estimate the relative posi-
tion of B with respect to A. As explained below in Section 5, an observing node
is able to independently estimate this physical quantity by locally measuring the
ranges to A and B, the angles-of-arrival of the ranging signals, as well as the
angles-of-emission of the ranging signals. By way of simulations, Section 6 shows
how an improved estimate of the relative locations of A and B can be created
by fusing estimates from many observing nodes.

3 A Model for Measurement Errors

In general for measurement systems, the process of measuring can be understood
as an operation based on the ground truth. For example, suppose we take a sen-
sor observation r̃. It is based on the actual physical quantity being observed, the
“ground truth”r. Incorporated in the observation is also an error due to the sys-
tem status (e.g. spatial configuration of the nodes, or environmental conditions)
which is described by a vector we want to call t. Additionally, there is an indepen-
dent part n influencing the measurement, which appears as random noise on the
measurements. Thus, the overall sensor observation can be described as the sum

r̃ = r + f(t, r) + n. (2)

This model divides the influences on our measurement into the two types of sys-
tematic (f(t, r)) and statistical (n) errors. Statistical errors come from random
sources of noise, such as the thermal noise present in sensors and their supporting
circuitry, or (particularly relevant to ultrasonic sensing) acoustic noise created
by uncorrelated physical events in the environment. Statistical errors cannot be
avoided but can be reduced by techniques such as cooling of electronic parts or
aggressive filtering of the sensor signal. Systematic errors in a measurement sys-
tem occur for a variety of reasons, including component ageing, wear-and-tear,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

346 A. Krohn, M. Hazas, and M. Beigl

or changing environmental conditions that affect the measurement process in a
constant and repeatable way. To handle the systematic errors, the traditional ap-
proach is to either model the errors or calibrate the affected parts of the system.
Modelling systematic error is e.g. done in ultrasonic ranging systems by taking
temperature and humidity measurements to gain an accurate estimate of the
speed of sound in air.1 Methods for calibration on the other hand vary in diffi-
culty and effectiveness, but a thorough calibration can be a tedious task requiring
high precision. Moreover, re-calibration is often required during the life-time of
a product, and this can also be very difficult and expensive to manage.

By analysing measurements from our ultrasonic localisation system, we dis-
covered that a large component of the systematic error is dependent upon the
spatial configuration of the nodes. Spatially-dependent systematic error has been
shown to exist for other sensing modalities as well; examples include infrared
light intensity [16] and radio RSSI [17]. We would expect that our methods
can be applied to sensor network localisation systems based on infrared light,
ultrasound, audible sound, or radio signals.

4 Removing Error in Measurements

In this paper, we focus on the low-labour technique of averaging; device-specific
calibration and modelling can always be carried out and applied in addition to
averaging. According to our error model (2), multiple measurements taken in
the same system conditions will help to reduce the statistical error n (assuming
the statistical error is non-biased). By contrast, the systematic part f(t, r) can
not be averaged out in this way, since it represents the constant and repeatable
error component.

4.1 Removing Systematic Error

One of the core ideas presented in this paper is a natural extension to averaging
in location system. It is obvious that averaging of multiple measurements helps
against statistical errors such as thermal noise in analogue components. In the
same way, we want to use averaging on the systematic error. We can achieve this
by varying the system state during multiple measurements. In our application of
positioning systems, this would e.g. imply to vary the system states like tempera-
ture, orientation etc. In other words, if we are able to measure the same physical
value under varying system states, we will not get a repeatable, but also varying
systematic error, and thus the systematic error loses its systematic nature.

4.2 Analysis of Experimental Measurements

In figure 3, we see a plot of the errors of the angle-of-arrival of ultrasound pulses
that were measured experimentally; our experimental analysis is based on data
1 If the estimate of the speed of sound is too fast or too slow, then all measurements

will suffer from a systematic over– or under-ranging.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 347

−150 −100 −50 0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

AOA error (degrees)

F
ra

ct
io

n
of

 o
cc

ur
re

nc
es

Within a metre
More than
a metre
fitted Gaussian

Fig. 3. Mean error for angles-of-arrival
detected by five nodes in many different
spatial configurations. The error char-
acteristic in this plot is for measure-
ments where the incoming ultrasound
pulses were sensed on two or more of
the node’s transducers; this condition
was true for over seventy percent of the
successful measurements taken.

−100 −50 0 50 100
−60

−40

−20

0

20

40

60

True angle−of−arrival (degrees)E
rr

or
 o

f r
ep

or
te

d
an

gl
e−

of
−

ar
riv

al
 (

de
gr

ee
s)

Fig. 4. Angle-of-arrival measurements
taken by a single node in different spa-
tial configurations. The error bars indi-
cate the tenth and ninetieth percentile
levels of the observed errors at a given
angle. The angle-of-arrival error offsets
for a given system state tend to be
tightly constrained, and thus system-
atic.

gathered using five nodes placed in fifty spatial configurations, with favourable
line-of-sight conditions [15]. The distribution is very similar to the Gaussian indi-
cated in the same figure. But for a given node spatial arrangement, we are more
interested in the specific error distribution rather than the total distribution for
all nodes/configurations. Figure 4 shows the angle-of-arrival measurement errors
reported by one node over many experimental settings. Each error bar shows
the distribution of angle-of-arrival errors measured from a particular node in a
particular location. While the error distribution for different nodes in different
spatial configurations varies, the spread of errors for a given node in a given spa-
tial configuration tends to be small. Thus, if measurements are taken by a node
in the same system state (t is constant), the error tends not to vary much; it
is repeatable, or systematic. This holds true for readings taken by all five nodes
used in the experiments; ninety percent of the ninetieth percentile angle errors
are within 16° of the median error.

For a particular node’s repeated measurements, Figure 4 shows that the angle-
of-arrival error tends to have a systematic offset. However, in order to motivate
the use of averaging to compensate for systematic errors, it is necessary to show
that the systematic errors of the nodes in a given spatial configuration are inde-
pendent. Using the experimental data collected from five nodes in fifty spatial
configurations, the range between two of the nodes was estimated by using data
collected locally by the other three. The three estimates were then averaged
together to create a fused estimate of the range between the two nodes. Fig-
ure 5 illustrates the result of fusing three locally-obtained range estimates. The
ninetieth percentile accuracy improves by about 15 cm. The graph demonstrates
that the device– and location-dependent systematic errors in the system are not

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

348 A. Krohn, M. Hazas, and M. Beigl

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Range error (cm)

P
er

ce
nt

ag
e

of
 e

st
im

at
io

ns
 w

ith
 e

rr
or

 le
ss

 th
an

 a
bs

ci
ss

a

Local, independent estimates
Mean of local estimates

Fig. 5. Removal of systematic error using data collected from three nodes to estimate
the range between two others

significantly correlated with one another; averaging the locally-estimated quan-
tities, despite their individual systematic offsets, yields an improved result.

5 Multiple, Simultaneous Measurements

In our analysis of the measurements, we found that a large component of the
systematic error depends on the particular signal angles-of-arrival at each node,
which is in turn dictated by the relative locations of the nodes. Instead of car-
rying out a device-specific calibration, we propose choosing a physical quantity
which is to be measured by many nodes to overcome the systematic nature.
Because each node has its own systematic but specific error offset (dependent
on the node’s location, orientation, and particular hardware), the random spa-
tial configuration of the nodes can be exploited to yield several estimates of
the same physical quantity which have different systematic error offsets. These
independent estimates can then be averaged together for an improved result.

Localisation nodes which are capable of measuring (1) the time-of-flight (i.e.
a range), (2) the angle-of-emission, and (3) the angle of arrival of the signal can,
using simple trigonometry, locally estimate the relative positions of any other
two beaconing nodes (figure 2). Note additionally that in many sensor systems,
any signals used for localisation (such as infrared, ultrasound, or ultra-wideband
radio) are of a broadcast nature.

Thus, multiple measurements can be accomplished simultaneously by different
nodes: whenever a node emits a localisation signal, a number N of other nodes
can take a measurement. Provided these N nodes can all estimate the same
quantity from their measurements (such as the range between two nodes A and B,
or their relative location coordinates), then the scaling of taking measurements
can be improved from O(N) to O(1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 349

Fig. 6. Performing multiple measurements in a relative positioning system based on
ultrasound

As shown in figure 6, if A and B both successively emit ranging signals, the
other nodes present can individually and simultaneously compute results under
different system states which can then be combined for improved positioning
of A and B. For example, when A transmits, another node D can measure A’s
relative position using the angle-of-arrival and range to A. When B transmits,
D similarly estimates its relative location. Since D has additionally logged the
angle-of-emission of the signal from A, D can perform a rotation (1) of its locally-
referenced coordinate system to express the location of B relative to A:

−→
ABA= (

−→
ADD −

−→
BDD)A. (3)

Other nodes in the environment (C, E, and F) can do the same, simultaneously
arriving at the relative position of B with respect to the local coordinate system

of A (
−→
ABA). Thus after an ultrasonic emission from both A and B, there are

N = 4 measurements of
−→
ABA. These estimates individually held by the nodes C,

D, E, and F now need to be combined, ideally in a way which scales favourably
as N increases.

5.1 Data Fusion with Multi-SDJS

We now hold N measurements r̃i of the same vector from A to B, which we want
to collect for a data process such as averaging. With multi-SDJS, we are capable
of collecting these vectors in a very efficient way. The important property is that
the time required to perform SDJS is independent of the number of participants.
Increasing the number of participants in multi-SDJS allows more observations
to be incorporated into the fused data estimate, without impacting the amount
of time required for the fusion process.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 A. Krohn, M. Hazas, and M. Beigl

For the ease of understanding, we explain the protocol directly with our appli-
cation of collecting the measured vectors from A to B; we called the measurement
r̃i. The SDJS process we utilise operates with scalar values in an a-priori known

interval. Therefore, the
−→
ABA measurements are expressed as polar coordinates

(r̃i, ϕ̃i)T , and multi-SDJS is performed for each component.2 For the SDJS pro-
cess, we assume that the nodes are within radio range of one another, since they
have been able to perform the localisation measurements.

Fig. 7. The multi-SDJS process for collecting data using signalling on the physical
layer of the nodes’ radio

Figure 7 shows how the collecting of data works. Node A initiates the multi-
SDJS scheme by broadcasting a start packet, which contains information about
the upcoming SDJS communication. In this case, it specifies that three SDJS
schemes will follow, each scheme containing four SDJS slots. The schemes corre-
spond to the ranges 30–32 cm, 32–34 cm, and 34–36 cm. To lower the necessary
slots and schemes, the ranges are based on the distance estimation that the
initiating node A has.

After the start packet, each node selects the SDJS scheme which corresponds
to their measurement. For example, if node D has a measurement of 31.2 cm,
it would select the first SDJS scheme. Then, during the time of the first SDJS
scheme, node D (and also node E) randomly select one SDJS-slot and emit a
jam signal. Using these emissions, from D and E signal to A that they have a
measurement that lies in the interval from 30 to 32 cm. Node A will receives
the signals and can estimate the number of nodes based on counted signals and
collisions. Node A does not simply count the number of jam signals but has to
2 Note that averaging can only work using a polar coordinate representation (r, ϕ)T ,

as the distribution of the measurement (as that shown in figure 10) is not bias-free in
(x, y)T . This is because the raw ultrasonic measurements themselves produce relative
distances and angles, and not (x, y) coordinate results.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 351

include possible collisions into its estimation. For a discussion on the estimation
theory, the reader is referred elsewhere [18].

6 Simulation

Our simulation is based on an indoor scenario of a 5m by 5m room with up to 200
nodes.3 The simulation error models for the range and angle-of-arrival accuracy
were derived from our experiments, in which over half a million measurements
were taken using five ultrasonic positioning nodes placed in fifty different spatial
configurations [15]. The following models were used for the simulation:

Angles-of-arrival: a Gaussian systematic error with μ = 0◦ and σ = 14◦; a
Gaussian statistical error with μ = 0◦ and σ = 1.4◦

Angles-of-emission: a uniform distribution in the interval [−45◦ . . . + 45◦]

Ranges: a right-sided half-Gaussian systematic error with μ = 0 cm and σ =
3.5 cm; a Gaussian statistical error with μ = 0 mm and σ = 4.9 mm

Simulation model for the SDJS process: The SDJS process influences the
averaging process of the distributed measurements. It quantises the numbers
(we used a resolution of 2 cm and 2°) and then the number estimation of
the SDJS process can also introduce errors due to an inadequate range of
possible values or due to using too few slots per scheme. For our simulation,
we assumed that the SDJS process would be suitably parameterised such
that the errors introduced with SDJS are negligible.

In the simulations, we compare “direct measurements” with the measuring
process results of our framework. The direct measurements assume a measure-
ment that is based on signals and data exchange only between the endpoint
nodes. We always take the best possible solution here and let B transmit and A
receive as the model for the angle-of-arrival (Gaussian, σ = 14o) is much more
narrow than the transmit model (uniform ±45o).

6.1 Acquisition of the Relative Position Between Two Nodes

Figure 8 shows a simulated room with 50 nodes. We measured the relative loca-
tion from node A (150, 150)T to B (350, 350)T . We simulated 1000 runs of this
scenario, varying the position of the 48 “helper” nodes. We looked at the error

for the relative position of node B, meaning the error of
−→
ABA. In figure 9, we

compare the results of direct measurements and our framework for the case of
50 nodes. The three plots show the relative occurrences of error values for the
angle between A and B, the absolute position error of B and the error for the
Cartesian coordinates (x,y) of the room. All three plots compare the distribution
of the results of the direct measurements with those of our framework.
3 The simulation was done using OMNet++. See http://www.omnetpp.org/.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.omnetpp.org/

352 A. Krohn, M. Hazas, and M. Beigl

0 100 200 300 400 500
0

100

200

300

400

500

Room X (cm)

R
oo

m
 Y

 (
cm

)

48 random objects
object B
object A

Fig. 8. A simulation run with 50 nodes

−60 −40 −20 0 20 40 60
0

50

100

150

Angle error (degrees)

O
cc

ur
re

nc
es

0 50 100 150 200 250 300
0

100

200

Distance error (cm)

O
cc

ur
re

nc
es

−200 −150 −100 −50 0 50 100 150 200
0

50

100

150

Location error (cm)

O
cc

ur
re

nc
es

direct measurement x
with the framework x
direct measurement y
with the framework y

direct measurement
with the framework

direct measurement
with the framework

Fig. 9. The improvements using the
framework for the measurements

For the direct measurements, the maximum error in positive x direction is
given when node B is (wrongly) positioned on the same y-position like A in the

room, then the x-position
−→
ABA of B is 432 cm plus some noise, resulting in a

x-position error of 82 cm plus noise. We can see this limit around 100 cm in
the x-position errors of figure 9. The distribution of angles are symmetric to
zero, which we expected. For all values, we see how the framework improves the
overall results. The distribution are much more narrow. The error on the absolute
location error gives the distribution of the distance of the results from the target
position of B. We also see here, how the mean was shifted towards zero.

Figure 10 gives another illustration of one of our simulation runs. It shows
how the distribution of the direct measurements are placed on a segment of a
circle, as the error in the angle ϕ is much higher than on the radius r. After
the averaging process of the 48 helper nodes, the distribution is much more
concentrated around the target node B. We simulated 1000 runs, each run with
a new topology, only the (x,y)-position of node A and B were held constant.
Their orientation varied as well.

In table 1, we find the statistical characteristics of the distributions for the
normal direct measurement process and the averaged values through our frame-
work. The improvements are exceedingly visible in the decreasing of the standard
deviation of the distributions. With the averaging, we achieve much more nar-
row distributions. The (x,y) coordinates describe the relative position error of
node B in the view of node A. Φ denotes the angle under which B was estimated
from the view of A. The row labelled “Euclidian” shows the absolute Euclidian
position error in the location estimation of B from its real position at (350,350).

Table 2, demonstrates how adding large numbers of nodes improves the re-
sults of the system. Numbers are based on a simulation of the same situation,
but with 198 “helper” nodes. One can see, how the standard deviations σ of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 353

0 100 200 300 400 500
0

100

200

300

400

500

Room X (cm)

R
oo

m
 Y

 (
cm

) direct measurements
with the framework
object B
object A

object B

Fig. 10. 1000 simulations run with 50
nodes

0 20 40 60 80 1004 10
0

10

20

30

40

50

60

Number of nodes

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

e
er

ro
r

(d
eg

re
es

 o
r

cm
)

standard deviation
for the distance error

standard deviation
for the angle error

Fig. 11. Gradual improvements of ac-
curacy with increasing number of
nodes N

Table 1. Statistical characteristics for N=0, 48

(μ/σ) direct meas. with framework (N=48)
Φ (degrees) (-0.3/ 13.4) (-0.1/ 4.9)

Euclidian (cm) (53.6/ 38.8) (38.5/ 10.8)
x (cm) (-4.7/ 47.2) (1.4/ 17.2)
y (cm) (-2.6/ 46.0) (1.6/ 17.7)

Table 2. statistical characteristics for N=0, 48, 198

(σ/95%) direct N=48 N=198
x (cm) (47.2/90.5) (17.2/ 32.4) (9.9/18.6)
y (cm) (46.0/86.5) (17.7/33.5) (10.0/20.6)

Φ (degrees) (13.4/35.6) (4.9/9.8) (2.8/5.5)
Euclidian (cm) (38.8/125) (10.8/56.3) (5.2/44.1)

the resulting statistics decrease and the distribution becomes even more nar-
row. The tabulated ninety-fifth percentiles give the error values at which the
corresponding cumulative distribution reached 0.95. In other words, 95% of all
measurements will have an error equal or smaller than that value.

As a next step, we now want to look at the dependency of our achieved
accuracy and the number of nodes. Table 2 already gives a hint on the clear
convergence with increasing number of nodes N . We again simulated the same
situation but now with a variable number of nodes from N = [1..200]. For
each number of nodes, we simulated 100 random topologies in the 5 by 5 m
room but kept nodes A and B at (x,y)-position (150,150) and (350,350) with
random orientation. We numerically extracted mean and standard deviations
from the results of the framework and plotted them against the number of nodes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 A. Krohn, M. Hazas, and M. Beigl

in Figure 11. We see how the standard deviation of the measurements decreases
the more nodes that are involved. The gradient is especially high for the low
number of nodes (N < 10). That means, that even with a comparably small
number of nodes, we can already achieve great improvements in accuracy. But
as the framework process time is independent of the number of participants, one
would always include all available measurements from all nodes in the area.

7 Conclusion

This paper has described and evaluated a method for reducing device-dependent
and spatially-dependent systematic error in localisation systems. Using this
method, many nodes simultaneously gather measurements to create estimates of
the same physical quantity, such as the relative location of one node with respect
to another. In so doing, the systematic errors can be treated as statistical or ran-
dom, since they depend on the nodes’ independent locations and orientations.
Averaging can then be applied to these independent estimates to improve the
overall result.

Using the SDJS protocol, the time required for sensor measurements and data
fusion is constant and independent of the number of nodes involved; the accuracy
increases with a higher number of nodes involved, as long as this number stays
in reasonable bounds. Some quantitative measures have been previously pub-
lished [18]. As an example calculation, we want to parameterise a typical SDJS
process for our application. With an initial estimate of the location of B relative
to A, we may need for the next estimate a range of ±50 cm for the SDJS process
with a resolution of 1 cm, resulting in one hundred SDJS schemes. Assuming a
slot time with 18 µs (based on physical parameter from IEEE 802.11a) and fifty
slots per value, we get a total time of 100 · 50 · 18µs = 90.0 ms for the averaging
process. Using fifty slots per value would allow the network to scale to upwards
of 300 nodes, and the SDJS process would still return accurate fused estimates.

With these properties, our method is ideally suited for low-cost hardware that
is densely distributed in the environment. With the method, we address both
statistical and even severe systematic errors of the hardware through the fusion of
measurements taken from different nodes in different locations and orientations.

Using a large number of measurements captured from five ultrasonic locali-
sation nodes, we demonstrated that the systematic errors of locally-estimated
ranges between any two nodes are independent and thus the overall error can
be vastly reduced by fusing the local estimates; even with just three nodes per-
forming the process, the ninetieth percentile range error can be improved by
about 20 cm. With the error models derived from these real measurements, we
also showed in simulations that the accuracy can be greatly improved using even
more nodes. For this, we simulated a 5 × 5 m room with both 50 and 200 nodes
and quantified the accuracy improvement. For example, the standard deviation
of the determined relative angle was reduced from σΦ,2 = 13.4 for the direct
measurement over σΦ,50 = 4.9 with a setting of 50 nodes to only σΦ,200 = 2.8
when using 200 nodes in the room.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Removing Systematic Error in Node Localisation 355

Acknowledgements

The work presented in this paper was undertaken as part of a collaborative
project, “Relate: Relative Positioning of Mobile Objects in Ad Hoc Networks.”
It is funded by the European Commission’s FP6 IST Programme, project number
013790.

References

1. Kamin Whitehouse, Chris Karlof, Alec Woo, Fred Jiang, and David Culler. The
effects of ranging noise on multihop localization: An empirical study. In Proceed-
ings of the Fourth International Symposium on Information Processing in Sensor
Networks (IPSN), pages 73–80, Los Angeles, USA, April 2005.

2. Andreas Savvides, Wendy L. Garber, Randolph L. Moses, and Mani B. Srivastava.
An analysis of error inducing parameters in multihop sensor node localization.
IEEE Transactions on Mobile Computing, 4(6):567–577, November 2005.

3. Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous com-
puting. IEEE Computer, 34(8):57–66, August 2001.

4. Jeffrey Hightower, Roy Want, and Gaetano Borriello. SpotON: An indoor 3d loca-
tion sensing technology based on RF signal strength. UW CSE 00-02-02, University
of Washington, Department of Computer Science and Engineering, Seattle, WA,
February 2000.

5. Kiran Yedavalli, Bhaskar Krishnamachari, Sharmila Ravula, and Bhaskar Srini-
vasan. Ecolocation: A sequence based technique for RF localization in wireless
sensor networks. In Proceedings of the Fourth International Symposium on Infor-
mation Processing in Sensor Networks (IPSN), pages 285–292, Los Angeles, USA,
April 2005.

6. Andreas Savvides, Chih-Chieh Han, and Mani B. Srivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Proceedings of the Seventh Interna-
tional Conference on Mobile Computing and Networking (MobiCom), pages 166–
179, Rome, Italy, July 2001.

7. Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, and Seth Teller. The
Cricket Compass for context-aware mobile applications. In Proceedings of the Sev-
enth International Conference on Mobile Computing and Networking (MobiCom),
Rome, Italy, July 2001.

8. Masateru Minami, Yasuhiro Fukuju, Kazuki Hirasawa, Shigeaki Yokoyama,
Moriyuki Mizumachi, Hiroyuki Morikawa, and Tomonori Aoyama. DOLPHIN:
a practical approach for implementing a fully distributed indoor ultrasonic posi-
tioning system. In Proceedings of the Sixth International Conference on Ubiqui-
tous Computing (UbiComp), pages 347–365, Nottingham, UK, September 2004.
Springer.

9. Miklós Maróti, Branislav Kusý, György Balogh, Péter Völgyesi, András Nádas,
Károly Molnár, Sebestyén Dóra, and Ákos Lédeczi. Radio interferometric geoloca-
tion. In Proceedings of the Third International Conference on Embedded Networked
Sensor Systems (SenSys), pages 1–12, San Diego, USA, November 2005.

10. Dragoş Niculescu and Badri Nath. Ad hoc positioning system (APS) using AOA.
In Proceedings of the Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM), pages 1734–1743, San Francisco, USA, March
2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

356 A. Krohn, M. Hazas, and M. Beigl

11. Koen Langendoen and Niels Reijers. Distributed localization in wireless sensor
networks: A quantitative comparison. Computer Networks, 43:499–518, August
2003.

12. Srdjan Čapkun, Maher Hamdi, and Jean-Pierre Hubaux. GPS-free positioning in
mobile ad-hoc networks. Cluster Computing Journal, 5(2):157–167, April 2002.

13. Yi Shang and Wheeler Ruml. Improved MDS-based localization. In Proceedings of
the Twenty-Third Conference of the IEEE Communications Society (INFOCOM),
Hong Kong, March 2004.

14. David Moore, John Leonard, Daniela Rus, and Seth Teller. Robust distributed
network localization with noisy range measurements. In Proceedings of the Second
International Conference on Embedded Networked Sensor Systems (SenSys), pages
50–61, Baltimore, USA, November 2004.

15. Mike Hazas, Christian Kray, Hans Gellersen, Henoc Agbota, Gerd Kortuem, and
Albert Krohn. A relative positioning system for co-located mobile devices. In
Proceedings of the Third International Conference on Mobile Systems, Applications,
and Services (MobiSys), Seattle, USA, June 6-8 2005.

16. Albert Krohn, Michael Beigl, Mike Hazas, Hans Gellersen, and Albrecht Schmidt.
Using fine-grained infrared positioning to support the surface-based activities of
mobile users. In Proceedings of the Fifth International Workshop on Smart Appli-
ances and Wearable Computing (IWSAWC), Columbus, USA, 2005.

17. John Krumm and Eric Horvitz. LOCADIO: inferring motion and location from
Wi-Fi signal strengths. In Proceedings of the First Annual International Conference
on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous), pages
4–13, Boston, USA, August 2004.

18. Albert Krohn, Tobias Zimmer, Michael Beigl, and Christian Decker. Collaborative
sensing in a retail store using synchronous distributed jam signalling. In Proceedings
of the Third International Conference on Pervasive Computing, Munich, Germany,
2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Arora, Anish 83

Balogh, György 51
Barton, John 179
Barton-Sweeney, Andrew 277
Beigl, Michael 341
Beutel, Jan 195
Blum, Philipp 195
Buckley, John 179
Bulusu, Nirupama 133
Buschmann, Carsten 325

Cai, Wandong 150
Cha, Hojung 293, 309
Chen, Hekang 101
Chen, Quanbin 17
Ciciriello, Pietro 34

Dang, Thanh 133
Demirbas, Murat 83
Duffy, Cormac 261
Dyer, Matthias 195

Fekete, Sàndor 325
Feng, Wu-chi 133
Fischer, Stefan 325
Fischione, Carlo 212

Ganesan, Deepak 67
Gauger, Matthias 1
Giusti, Alessandro 245
Guan, Jihong 101

Halkes, G.P. 228
Hazas, Mike 341
Hellbrück, Horst 325
Herbert, John 261

Johansson, Karl Henrik 212
Jung, Deokwoo 277

Kalt, Thomas 195
Kim, Hyoseung 293
Krohn, Albert 341
Kröller, Alexander 325

Kulathumani, Vinodkrishnan 83
Kulkarni, Purushottam 67
Kusý, Branislav 51

Lachenmann, Andreas 1
Laffey, Dennis 179
Langendoen, K.G. 228
Lédeczi, Ákos 51
Li, Yongjun 150
López Villafuerte, Freddy 163

Ma, Jian 17
Maróti, Miklós 51
Marrón, Pedro José 1
Martin, Kevin 195
Minder, Daniel 1
Molva, Refik 117
Mottola, Luca 34
Murphy, Amy L. 245
Murphy, Frank 179

Naumowicz, Tomasz 163
Ni, Lionel M. 17

Oehen, Patrice 195
O’Flynn, Brendan 179
Önen, Melek 117

Picco, Gian Pietro 34, 245

Ritter, Hartmut 163
Roedig, Utz 261
Rothermel, Kurt 1

Sallai, János 51
Saukh, Olga 1
Savvides, Andreas 277
Schiller, Jochen 163
Shenoy, Prashant 67
Sreenan, Cormac J. 261
Sridharan, Mukundan 83

Teixeira, Thiago 277
Terfloth, Kirsten 163
Thiele, Lothar 195
Tian, Guangli 150

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 Author Index

Wang, Wei 150
Wittenburg, Georg 163

Yang, Sungwon 309

Zhang, Dian 17
Zhou, Shuigeng 101
Zhu, Yanmin 17
Zurita Ares, Benigno 212

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Versatile Support for Efficient Neighborhood Data Sharing
	Introduction
	Related Work
	Neighborhood Data Sharing Algorithm
	Neighborhood Management
	Sending Requests
	Sending Data
	Further Optimizations

	Programming and Runtime Support
	Cross-Layer Data Exchange with TinyXXL
	Integration of Neighborhood Data Sharing

	Evaluation
	Experimental Setup
	Efficiency of Neidas
	Comparison with Hood
	Integration in Sense-R-Us

	Conclusions and Future Work
	An Energy-Efficient K-Hop Clustering Framework forWireless Sensor Networks
	Introduction
	Related Work
	Preliminaries
	EDC Algorithm
	Basic Idea
	Data Structures
	Head Selection Criteria
	Parameter Selection
	Correctness

	Performance Evaluation
	Conclusions and Future Work
	References
	Efficient Routing from Multiple Sources to Multiple Sinks in Wireless Sensor Networks
	Introduction
	System Model and Optimal Solution
	A Distributed Solution
	Evaluation
	Related Work
	Conclusions and Future Work
	inTrack: High Precision Tracking of Mobile Sensor Nodes
	Introduction
	Radio-Interferometric Ranging
	Radio-Interferometric Ranging and Tracking

	Approach
	Frequency and Phase Analysis
	q-Range Computation
	Tracking
	Tradeoffs

	Results
	Simulation Results
	Experimental Results

	Related Work
	Discussion
	Approximate Initialization of Camera Sensor Networks
	Introduction
	Motivation
	Research Contributions

	Problem Formulation
	Approximate Initialization
	Determining the Degree of Overlap
	Determining the Region of Overlap

	Applications
	Duty-Cycling
	Triggered Wakeup

	Prototype Implementation
	Experimental Evaluation
	Simulation Setup
	Degree of Overlap Estimation
	Region of Overlap Estimation
	Implementation Results

	Related Work
	Conclusions
	Trail: A Distance Sensitive WSN Service for Distributed Object Tracking
	Introduction
	Model and Specification
	Trail
	Tracking Data Structure
	Updating the Trail
	Basic Find Algorithm

	Implementing Trail in a WSN
	Implementing find on WSN Grid
	Implementing $Update$ on WSN Grid
	Fault-Tolerance

	Refinements to Trail
	Tightness of Trail Tracking Structure
	Modifying Trail Segments

	Performance Evaluation
	Related Work
	Conclusions and Future Work
	Towards Energy-Efficient Skyline Monitoring in Wireless Sensor Networks
	Introduction
	Related Work
	Skyline Operator in Database
	Data Processing in Sensor Networks

	Problem Statement and Preliminaries
	In-Network Continuous Skyline Computation
	Naïve Approach
	Basic Design of Hierarchical Threshold-Based Approach
	MINMAX
	Failure Management

	Performance Evaluation
	Conclusion
	Secure Data Aggregation with Multiple Encryption
	Introduction
	Problem Statement
	Aggregation in Wireless Sensor Networks
	Security Requirements
	The Proposed Framework

	The Proposed Encryption Algorithm
	Additive Homomorphic Encryption
	CTR Encryption Scheme
	Multiple Key CTR Encryption for Secure Data Aggregation

	The Proposed Model: Layered Secure Aggregations
	Notation
	The Proposed Key Attribution Algorithm
	The Aggregation Protocol

	Evaluation
	Security Evaluation
	Robustness of the Scheme
	Performance Evaluation

	Related Work
	Conclusion
	RIDA: A Robust Information-Driven Data Compression Architecture for Irregular Wireless Sensor Networks
	Introduction
	Related Work
	Data Compression
	Data Compression in Wireless Sensor Networks

	Understanding Data Correlation
	RIDA: Robust Information-Driven Architecture
	Key Assumptions
	Overview
	Information-Driven Logical Mapping
	Data Transformation
	Error Detection and Classification

	Experimental Design and Analysis
	Goals and Metrics
	Experimental Design
	Results and Analysis

	Conclusion and Future Work
	Loss Tomography in Wireless Sensor Network Using Gibbs Sampling
	Introduction
	Related Work
	System Model
	Network Model
	Loss Model

	Loss Inferences
	Problem Formulation
	Loss Inference Using Gibbs Sampling
	Algorithm Description

	Simulation Study
	Conclusions
	Fence Monitoring – Experimental Evaluation of a Use Case for Wireless Sensor Networks
	Introduction, Goals and Motivation
	The ScatterWeb WSN Platform
	Experimental Setup and Software Architecture
	Construction Fence Deployment
	Types of Events
	A Layered Software Architecture for Event Detection
	Design Alternatives and Robustness Considerations

	Deployment and Experimental Results
	Calibration Values and Implementation Details
	Results and Discussion

	Related Work
	Conclusion and Future Work
	Development of a Wireless Sensor Network for Collaborative Agents to Treat Scale Formation in Oil Pipes
	Introduction
	Hardware Development
	Description of Hardware Used on the WSN
	Integration of the 25mm Hardware Platform Interfaced to the CAA

	Sensors Integration on the Agent
	pH
	Proximity Detection
	Pressure Sensor and Syringe Feedback Loop
	Repair Actuator

	Field Studies of the Agents Underwater and Sensor Characterisation
	Algorithms Generated by the FSM
	Results Generated by the FSM for Field-Tests

	Testing of the SRM0 - SNN on the FPGA
	RF System Design and Characterisation for Use Underwater
	Antenna Design
	Tuning the Antennae for Optimal Transmission
	Underwater Tests

	Future Work
	Conclusions
	References
	Deployment Support Network A Toolkit for the Development of WSNs
	Introduction
	Related Work
	Deployment Support Networks
	DSN--Architecture
	DSN--Services
	Test Automation

	Realization
	Bluetooth Scatternets
	Wired Target Interface
	Client Interface
	Performance Evaluation

	Case-Study: Link Characterization in Buildings
	Conclusion
	Energy Consumption of Minimum Energy Coding in CDMA Wireless Sensor Networks
	Introduction
	System Description
	ME Coding
	MME Coding
	Wireless Channel

	Optimal Transmission Power
	Performance Analysis: Error Probability
	Error Probability in ME Coding
	Error Probability in MME Coding

	Performance Analysis: Energy Consumption
	ME Coding
	MME Coding

	Numerical Results
	Conclusions
	Crankshaft: An Energy-Efficient MAC-Protocol for Dense Wireless Sensor Networks
	Introduction
	Related Work
	Crankshaft
	Simulation Setup
	Simulation Results
	Convergecast
	Broadcast Flood
	Crankshaft Latency

	TinyOS Implementation
	Discussion
	Variations

	Conclusions and Future Work
	Decentralized Scattering ofWake-Up Times in Wireless Sensor Networks
	Introduction
	Model and Motivation
	Model
	Wake-Up Scattering: Objectives and Usage Scenarios

	A Decentralized Wake-Up Scattering Algorithm
	Overview
	Extensions for Tree-Based Communication
	Pseudocode
	Removing Synchronization Requirements

	Evaluation
	Related Work
	Conclusions
	Improving the Energy Efficiency of the MANTIS Kernel
	Introduction
	Related Work
	Preliminary Research
	Evaluation Goals
	Evaluation Setup
	Event Processing
	Energy Consumption
	Findings

	The MANTIS Kernel Architecture
	Overview
	Scheduling
	Power Management

	MANTIS Kernel Modifications
	Idle Thread
	Time Slice Timer
	The Kenel Queues

	Experimental Evaluation
	Event Processing
	Energy Consumption

	Conclusion
	Model-Based Design Exploration of Wireless Sensor Node Lifetimes
	Introduction
	Related Work
	Model Overview and Assumptions
	Assumptions
	Node Power Modes and Variables

	Lifetime Models
	Trigger-Driven Lifetime Model
	Schedule-Driven Lifetime Model
	Trigger-Driven and Schedule-Driven Comparison

	Case Study: Using the Models to Characterize and Make Decisions About a Camera Sensor Node
	Conclusion
	Multithreading Optimization Techniques for Sensor Network Operating Systems
	Introduction
	Thread Optimization for Sensor Applications
	Single Kernel Stack
	Stack-Size Analysis
	Variable Timer
	Event-Boosting Thread Scheduling

	Evaluation
	Effect of Stack Optimization
	Effect of Variable Timer
	Effect of Event-Boosting Scheduling Policy
	RETOS vs. TinyOS

	Related Work
	Conclusion
	References
	An Empirical Study of Antenna Characteristics Toward RF-Based Localization for IEEE 802.15.4 Sensor Nodes
	Introduction
	Related Work
	Antenna Orientation
	Cause of Antenna Orientation
	Length of Antenna
	Collinear Monopole Antenna
	Asymmetric Link

	RSS Fluctuation
	Ground Reflection
	Experiment Using Parabolic Antennas

	Deployment Consideration
	Discussion
	Conclusions and Future Work
	References
	Radio Propagation-Aware Distance Estimation Based on Neighborhood Comparison
	Introduction
	Related Work
	Radio Model Properties
	Radio Model Dependent Distance Estimation
	Simulative Evaluation
	Radio Irregularity Model
	Linear Stochastic Radio Model
	Unit Disk Graph Model

	Conclusion and Future Work
	Removing Systematic Error in Node Localisation Using Scalable Data Fusion
	Introduction
	Related Work
	Motivation
	Target Application Scenarios

	System Operation
	Relative Positions
	Creating Local Estimates of the Same Physical Quantity

	A Model for Measurement Errors
	Removing Error in Measurements
	Removing Systematic Error
	Analysis of Experimental Measurements

	Multiple, Simultaneous Measurements
	Data Fusion with Multi-SDJS

	Simulation
	Acquisition of the Relative Position Between Two Nodes

	Conclusion

